# GMRES-based iterative refinement in up to five precisions

Speaker : Bastien Vieublé Joint work with : Patrick Amestoy, Alfredo Buttari, Jean-Yves L'Excellent, Nicholas J. Higham, Theo Mary

SIAM CSE 2021

# Generalized iterative refinement

| Algorithm Generalized iterative refinement         |                           |  |  |
|----------------------------------------------------|---------------------------|--|--|
| 1: Compute the LU factorization $A = LU$ ( $u_f$ ) |                           |  |  |
| 2: Solve $Ax_0 = b$                                | ( <i>u<sub>f</sub></i> )  |  |  |
| 3: while not converged do                          |                           |  |  |
| 4: Compute $r_i = b - Ax_i$                        | ( <i>u</i> <sub>r</sub> ) |  |  |
| 5: Solve $Ad_i = r_i$                              | (U <sub>s</sub> )         |  |  |
|                                                    |                           |  |  |
| 6: Compute $x_{i+1} = x_i + a_i$                   | (u)                       |  |  |
| 7: end while                                       |                           |  |  |

- The solver at step 5 is arbitrary.
- $u_s$  expresses the precision of the computed solution  $d_i$  provided by this solver ( $\neq$  unit roundoff of an arithmetic precision).

E. Carson and N. J. Higham. "Accelerating the solution of linear systems by iterative refinement in three precisions". In : SIAM, 2018.

# Generalized iterative refinement

| Algorithm Generalized iterative refinement       |                           |  |  |
|--------------------------------------------------|---------------------------|--|--|
| 1: Compute the LU factorization $A = LU$         | ( <i>U</i> <sub>f</sub> ) |  |  |
| 2: Solve $Ax_0 = b$                              | ( <i>u<sub>f</sub></i> )  |  |  |
| 3: while not converged do                        |                           |  |  |
| 4: Compute $r_i = b - Ax_i$                      | ( <i>u</i> <sub>r</sub> ) |  |  |
| 5: Solve $Ad_i = r_i$                            | (U <sub>s</sub> )         |  |  |
| 6: Compute $x_{i+1} = x_i + d_i$<br>7: end while | ( <i>u</i> )              |  |  |

Two main properties determined by the set of precisions :

- The convergence condition : the maximal value of  $\kappa(A)$  for which convergence is guaranteed.  $(u_f, u_s)$
- The limiting accuracies : the accuracies at which the forward and backward errors converge. (*u*, *u*<sub>r</sub>)

## LU-IR3

#### Algorithm LU-based iterative refinement in three precisions

1: Compute the LU factorization 
$$A = LU$$
 $(u_f)$ 2: Solve  $Ax_0 = b$  $(u_f)$ 3: while not converged do $(u_f)$ 4: Compute  $r_i = b - Ax_i$  $(u_r)$ 5: Solve  $Ad_i = r_i$  by  $d_i = \hat{U}^{-1}\hat{L}^{-1}r_i$ . $(u_f)$ 6: Compute  $x_{i+1} = x_i + d_i$  $(u)$ 7: end while $(u)$ 

Step 5 : Solver LU –  $u_s \equiv u_f$ .

E. Carson and N. J. Higham. "Accelerating the solution of linear systems by iterative refinement in three precisions". In : SIAM, 2018.

## LU-IR3

#### Algorithm LU-based iterative refinement in three precisions

1: Compute the LU factorization 
$$A = LU$$
 $(u_f)$ 2: Solve  $Ax_0 = b$  $(u_f)$ 3: while not converged do $(u_f)$ 4: Compute  $r_i = b - Ax_i$  $(u_r)$ 5: Solve  $Ad_i = r_i$  by  $d_i = \hat{U}^{-1}\hat{L}^{-1}r_i$ . $(u_f)$ 6: Compute  $x_{i+1} = x_i + d_i$  $(u)$ 7: end while $(u)$ 

|        | Convergence condition  | Forward error      |
|--------|------------------------|--------------------|
| LU-IR3 | $\kappa(A) < u_f^{-1}$ | $u_r\kappa(A) + u$ |

Very low precision factorization (e.g fp16, bfloat16) leads to a very restrictive convergence condition for LU-IR3 (e.g  $2 \times 10^3$ ).

#### Algorithm GMRES-based iterative refinement in three precisions

1: Compute the LU factorization 
$$A = LU$$
 $(u_f)$ 2: Solve  $Ax_0 = b$  $(u_f)$ 

3: while not converged do

4: Compute 
$$r_i = b - Ax_i$$
 ( $u_r$ )

5: Solve  $\tilde{A}d_i = \hat{U}^{-1}\hat{L}^{-1}Ad_i = \hat{U}^{-1}\hat{L}^{-1}r_i$  by GMRES at precision (*u*) with matrix vector products with  $\tilde{A}$  at precision (*u*<sup>2</sup>).

6: Compute 
$$x_{i+1} = x_i + d_i$$
 (u)

7: end while

Step 5 : Preconditioned GMRES in two precision –  $u_s \equiv u$ .

E. Carson and N. J. Higham. "A new analysis of iterative refinement and its application to accurate solution of ill-conditioned sparse linear systems". In : SIAM, 2017.

#### Algorithm GMRES-based iterative refinement in three precisions

1: Compute the LU factorization 
$$A = LU$$
 $(u_f)$ 2: Solve  $Ax_0 = b$  $(u_f)$ 

3: while not converged do

4: Compute 
$$r_i = b - Ax_i$$
 ( $u_r$ )

5: Solve  $\tilde{A}d_i = \hat{U}^{-1}\hat{L}^{-1}Ad_i = \hat{U}^{-1}\hat{L}^{-1}r_i$  by GMRES at precision (*u*) with matrix vector products with  $\tilde{A}$  at precision (*u*<sup>2</sup>).

6: Compute 
$$x_{i+1} = x_i + d_i$$

7: end while

|            |           | Convergence condition           | Forward error      |
|------------|-----------|---------------------------------|--------------------|
|            | LU-IR3    | $\kappa(A) < U_f^{-1}$          | $U_r\kappa(A) + U$ |
|            | GMRES-IR3 | $\kappa(A) < u^{-1/2} u_f^{-1}$ | $u_r\kappa(A) + u$ |
| <b>~</b> — |           |                                 |                    |

If  $u_f$  is fp16, then the condition on LU-IR3 is  $2 \times 10^3$ , on GMRES-IR3 is  $2 \times 10^{11}$ !

(u)

In GMRES-IR3, LU solves are performed at precision  $u^2$ : this is a major practical issue.

In GMRES-IR3, LU solves are performed at precision *u*<sup>2</sup> : this is a **major practical issue**.

- Increases cost per iteration.
- If  $u^2$  is fp128, requires a quad precision solver.
- Cast the LU factors from precision  $u_f$  to precision  $u^2$

 $\Rightarrow$  huge memory increase

**Other issue :** Do we need to run the other GMRES operations in precision *u*?

In GMRES-IR3, LU solves are performed at precision *u*<sup>2</sup> : this is a **major practical issue**.

- Increases cost per iteration.
- If  $u^2$  is fp128, requires a quad precision solver.
- Cast the LU factors from precision  $u_f$  to precision  $u^2$

 $\Rightarrow$  huge memory increase

**Other issue :** Do we need to run the other GMRES operations in precision *u*?

 $\Rightarrow$  What if we **relax the precision u**<sup>2</sup> on the preconditioning **and u** on the rest of the operations?

#### Algorithm GMRES-IR3

3: while not converged do

4: Compute 
$$r_i = b - Ax_i$$
 ( $u_r$ )

5: Solve  $\widetilde{A}d_i = \widehat{U}^{-1}\widehat{L}^{-1}Ad_i = \widehat{U}^{-1}\widehat{L}^{-1}r_i$  by GMRES at precision (*u*) with matrix vector products with  $\widetilde{A}$  at precision (*u*<sup>2</sup>).

6: Compute 
$$x_{i+1} = x_i + d_i$$

7: end while

*(u)* 

## Algorithm GMRES-IR3

| 1:  | Compute the LU factorization $A = LU$                                                                     | $(U_f)$  |   |
|-----|-----------------------------------------------------------------------------------------------------------|----------|---|
| 2 : | Solve $Ax_0 = b$                                                                                          | $(u_f)$  |   |
| 3:  | while not converged do                                                                                    |          |   |
| 4:  | Compute $r_i = b - Ax_i$                                                                                  | $(u_r)$  |   |
| 5:  | Solve $\widetilde{A}d_i = \hat{U}^{-1}\hat{L}^{-1}Ad_i = \hat{U}^{-1}\hat{L}^{-1}r_i$ by GMRES at precise | sion (u) | ) |
|     | with matrix vector products with $\tilde{A}$ at precision ( $u^2$ ).                                      |          |   |
| 6:  | Compute $x_{i+1} = x_i + d_i$                                                                             | (u)      |   |
| 7:  | end while                                                                                                 |          |   |

#### Algorithm GMRES-IR5

- 1: Compute the LU factorization A = LU  $(u_f)$ 2: Solve  $Ax_0 = b$   $(u_f)$ 3: while not converged do 4: Compute  $r_i = b - Ax_i$   $(u_r)$ 5: Solve  $\widetilde{A}d_i = \widehat{U}^{-1}\widehat{L}^{-1}Ad_i = \widehat{U}^{-1}\widehat{L}^{-1}r_i$  by GMRES at precision  $(u_g)$ with matrix vector products with  $\widetilde{A}$  at precision  $(u_p)$ . 6: Compute  $x_{i+1} = x_i + d_i$  (u)7: end while
  - *u*<sub>p</sub> : precision at which we apply the **preconditioned** matrix-vector products.
  - +  $u_{g}$  : precision at which we apply the other **GMRES** operations.

Possibly  $u_p > u^2$  (and  $u_g > u$ ).

# Preconditioned MGS-GMRES in 2 precisions

**Theorem (Stability of preconditioned MGS-GMRES in 2 precisions)** Consider solving a preconditioned linear system

$$\widetilde{A}d = s, \quad \widetilde{A} = \hat{U}^{-1}\hat{L}^{-1}A, \quad A \in \mathbb{R}^{n \times n},$$

with a MGS-GMRES in precision  $u_g$  except for the products with  $\widetilde{A}$  applied in precision  $u_p$ .

The computed solution  $\hat{d}$  achieves a backward error of order

 $u_s \equiv u_g + u_p \kappa(A)$ 

 $\Rightarrow$  It generalizes the **backward stability** of **MGS-GMRES** to a preconditioned MGS-GMRES in **2 precisions**.

C. Paige, M. Rozložník and Z. Strakoš. "Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES". In : SIAM, 2006.

| IR        | Convergence condition                          |
|-----------|------------------------------------------------|
| LU-IR3    | $\kappa(A)u_f\ll 1$                            |
| GMRES-IR5 | $(u_g + u_p \kappa(A))\kappa(A)^2 u_f^2 \ll 1$ |
| GMRES-IR3 | $\kappa(A)u^{1/2}u_f\ll 1$                     |

If  $u_f$  is fp16, the condition on LU-IR3 is  $2 \times 10^3$ , on GMRES-IR5 (with  $u_g = u_p = \text{fp64}$ ) is  $3 \times 10^7$ , on GMRES-IR3 is  $2 \times 10^{11}$ 

With five arithmetics (fp16, bfloat16, fp32, fp64, fp128) GMRES-IR5 can be declined in over 3000 different combinations!

#### They are not all relevant!

Filter principle : Useless to have high precision when we can use low precision without impacting the limiting accuracy and convergence condition.

#### **Filtering rules**

- $u^2 \leq u_r \leq u \leq u_f$ •  $u_p < u, u_p = u$ , and  $u_p > u$
- $\cdot u_{D} \leq u_{a}$

- $\cdot u_a = u$  and  $u_a > u$

•  $U_p < U_f$ 

•  $u_a < u_f$ ,  $u_a = u_f$ , and  $u_a > u_f$ 

These rules are based on the limiting accuracy and convergence condition formulas.

|          | ID | Signif. bits | Exp. bits | Range               | Unit roundoff <i>u</i> |
|----------|----|--------------|-----------|---------------------|------------------------|
| fp128    | Q  | 113          | 15        | 10 <sup>±4932</sup> | $1 \times 10^{-34}$    |
| fp64     | D  | 53           | 11        | 10 <sup>±308</sup>  | $1 \times 10^{-16}$    |
| fp32     | S  | 24           | 8         | 10 <sup>±38</sup>   | $6 \times 10^{-8}$     |
| fp16     | Н  | 11           | 5         | 10 <sup>±5</sup>    | $5 \times 10^{-4}$     |
| bfloat16 | В  | 8            | 8         | 10 <sup>±38</sup>   | $4 \times 10^{-3}$     |

# Theoretical robustness over $\kappa(A)$

| Иg     | Иp     | Convergence Condition<br>max(κ(A)) |
|--------|--------|------------------------------------|
| LU-IR3 |        | $2 \times 10^{3}$                  |
| В      | S      | $3 \times 10^{4}$                  |
| Н      | S      | $4 \times 10^4$                    |
| Н      | D      | $9 \times 10^4$                    |
| S      | D      | $8 \times 10^{6}$                  |
| D      | D      | $3 \times 10^{7}$                  |
| GMR    | ES-IR3 | $2 \times 10^{11}$                 |

Meaningful combinations of GMRES-IR5 for  $u_f = H$  and u = D.

Five combinations between LU-IR3 and GMRES-IR3  $\Rightarrow$  More flexible precisions choice to fit at best the hardware constraints and the problem difficulty.



We want to study the experimental **robustness** on  $\kappa(A)$  of the following variants :

•  $\mathbf{u} = D$ ,  $\mathbf{u}_r = Q$ , and  $\mathbf{u}_f = H$  fixed.

 GMRES precision ug, preconditioning precision up varying.



Evaluate the robustness? **Success rate of convergence** seems to be a good measure.

It converges when it reaches the theoritical limiting accuracy (u = D and  $u_r = Q \Rightarrow$  forward error = 10<sup>-16</sup>).



- Success rate of convergence of LU-IR3 and GMRES-IR5. Each success rate computed from 100 50  $\times$  50 randsvd dense matrices.
- The more the breaking point of the success rate is high the more the method is robust (ex : LU-IR  $\approx 10^2 10^3$ ).



• GMRES-IR5 with  $u_g = D$  and  $u_p = Q$  far more robust on  $\kappa(A)$ .



• When  $u_p = Q \rightarrow D$ , lose really little in robustness.

 $\Rightarrow$  No compromise by not using Q (maybe not hardware supported)!



• When  $u_p = D \rightarrow S$ , lose in robustness but still far more robust than LU-IR3.



• When  $u_g = D \rightarrow S$ :

- $u_p = D$  and  $u_p = Q$  lose in robustness.
- $u_p = S$  same as  $u_g = D \Rightarrow$  better use  $u_g = S$ .



• When  $u_g = S \rightarrow H$ , still more robust than LU-IR3 with  $u_g$  in really low precision.

# Five-precisions combinations



2 five-precisions combinations meaningful theoretically :

 $(u_f = B, u = D, u_r = Q, u_g = H, u_p = S)$   $(u_f = H, u = D, u_r = Q, u_g = B, u_p = S)$ 

 $\Rightarrow$  Tradeoff between 2 four-precisions combinations allowing even finer setup of convergence conditions.

## Cumulated number of LU solve calls ( $\approx$ nb iterations)



Performance profile on 230 little **Suite Sparse real life** matrices.  $\rho$  indicates the % of matrices for which a given combination requires less than  $\alpha$  times the number of LU solves required by the best combination.  $u_f = H$  fixed.

## Cumulated number of LU solve calls ( $\approx$ nb iterations)



Performance profile on 230 little **Suite Sparse real life** matrices.  $\rho$  indicates the % of matrices for which a given combination requires less than  $\alpha$  times the number of LU solves required by the best combination.  $u_f = H$  fixed.

## Cumulated number of LU solve calls ( $\approx$ nb iterations)



Performance profile on 230 little **Suite Sparse real life** matrices.  $\rho$  indicates the % of matrices for which a given combination requires less than  $\alpha$  times the number of LU solves required by the best combination.  $u_f = H$  fixed.

# Conclusion

#### Contributions

- **GMRES-IR5 + error analysis :** high versatility on precisions allowing better fit of precisions combinations according to problem difficulty and hardware.
- Numerical experiments : Validate the theoretical convergence condition on hundreds generated and real life matrices.

**Future work :** High performance parallel implementation within distributed memory for the solution of sparse systems.

Amestoy, Buttari, Higham, L'Excellent, Mary, Vieublé. "Five precisions GMRES-based iterative refinement". In : Submission soon.

# Sparse - Time Performance (No MPI - 18 threads)



LU-IR  $u_f = S$  Vs GMRES-IR  $u_f = S$   $u_g = D$   $u_p = D$  normalized by LU direct solver in full D; multifrontal solver MUMPS;

• LU-IR 1.4 –1.7× faster on most of the matrices!

 GMRES-IR slower than LU-IR, but converges on all the matrices ⇒ more robust.