Combining sparse approximate factorizations with mixed precision iterative refinement

Speaker : Bastien Vieublé **Joint work with :** Patrick Amestoy, Alfredo Buttari, Jean-Yves L'Excellent, Nicholas J. Higham, Théo Mary

ISC 2022

Sparse Direct Solver

Large Sparse Linear System Ax = b

At the foundations of many scientific computing applications (discretization of PDEs, step of an optimzation method, ...).

Direct solver properties

- > Pros : Robust, easy to use, accurate.
- > Cons : Compute and memory intensive, limited scalability.

Sparse Direct Solver

Large Sparse Linear System Ax = b

At the foundations of many scientific computing applications (discretization of PDEs, step of an optimzation method, ...).

Direct solver properties

- > Pros : Robust, easy to use, accurate.
- > Cons : Compute and memory intensive, limited scalability.

 \Rightarrow Reduce the complexity : Numerical approximations, low arithmetic precisions.

Multifrontal Sparse Direct Factorization

A sparse factorization can be decomposed into a series of factorizations of dense matrices (fronts) :

- > The red parts are the LU entries, the green part are temporary data.
- In multifrontal factorization the total memory consumption is higher than the factors in memory. The difference is called the active memory overhead.

Multifrontal Sparse Direct Factorization

A sparse factorization can be decomposed into a series of factorizations of dense matrices (fronts) :

- > The red parts are the LU entries, the green part are temporary data.
- In multifrontal factorization the total memory consumption is higher than the factors in memory. The difference is called the active memory overhead.

Numerical approximations : Block-Low-Rank

Block-Low-Rank¹: Decompose the dense matrices into regular blocks of size *b*. Try to compress each block with a low rank approximation at precision ϵ_{BLR} .

^{1.} Théo Mary, Block Low-Rank multifrontal solvers : complexity, performance, and scalability, 2017

Numerical approximations : Block-Low-Rank

Block-Low-Rank : Decompose the dense matrices into regular blocks of size *b*. Try to compress each block with a low rank approximation at precision ϵ_{BLR} .

	Flops	Memory
Classic	0(n ²)	$O(n^{\frac{4}{3}})$
BLR	0(n ⁴ / ₃)	$O(n\log(n))$

Complexities on cubic domain

Pros:

... which is translated in time and memory savings!

Cons:

- > Introduce a perturbation ϵ_{BLR} .
- ► Compression is problem dependent.

Numerical approximations : Static pivoting

Partial Pivoting

Pros:

- > No pivot search overhead.
- No synch communications for pivoting.

Static Pivoting²

Cons:

- **>** Large ϵ_{STC} less accuracy.
- > Low $\epsilon_{\rm STC}$ less stability.

The philosophy is to **deliberately approximate the computations** in order **to improve the performance** at the cost of **introducing a perturbation**.

- > The perturbed problem should be close to the original one and...
- should reduce time and/or memory!
- Sometimes the bigger the perturbations the bigger the savings (e.g. BLR).

BUT big perturbations = low accuracy

Algorithm Iterative refinement	
1: Compute the LU factorization $A = \hat{L}\hat{U}$	(<i>U</i> _f)
2: Solve $Ax_0 = b$	(u_f)
3: while not converged do	
4: Compute $r_i = b - Ax_i$	(<i>u</i> _r)
5: Solve $Ad_i = r_i$.	(u_s)
6: Compute $x_{i+1} = x_i + d_i$	(<i>u</i>)
7: end while	

The strategy is to accelerate with low precisions the factorization and recover a good accuracy with higher precisions on the correction iterations.

Algorithm Iterative refinement : LU-IR3 ^a	
1: Compute the LU factorization $A = \hat{L}\hat{U}$	(<i>u_f</i>)
2: Solve $Ax_0 = b$	(u_f)
3: while not converged do	
4: Compute $r_i = b - Ax_i$	(<i>u</i> _r)
5: Solve $Ad_i = r_i$ by $d_i = \hat{U}^{-1}\hat{L}^{-1}r_i$.	(u_f)
6: Compute $x_{i+1} = x_i + d_i$	(u)
7: end while	

We can change the solver used for the correction equation :

► LU-IR3 : the classical form of refinement for direct solvers.

a. E. Carson and N. J. Higham, Accelerating the solution of linear systems by iterative refinement in three precisions, 2018

We can change the solver used for the correction equation :

• GMRES-IR5 : a more robust form capable of tackling higher condition number $\kappa(A)$.

a. Amestoy, Buttari, Higham, L'Excellent, Mary, and Vieublé, Five-Precision GMRES-based iterative refinement, 2021

⇒ We want to use iterative refinement to improve the accuracy of sparse approximate solvers!

Question : What are the specificities of IR with sparse approximate solvers?

1: Compute the LU factorization $A = \hat{L}\hat{U}$	$\mathcal{O}(n^3)$	$\mathcal{O}(n^2)$	(<i>u_f</i>)
2: Solve $Ax_0 = b$	$\mathcal{O}(n^2)$	$O(n^{4/3})$	(<i>U_f</i>)
3: while not converged do			
4: Compute $r_i = b - Ax_i$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$	(u _r)
5: Solve $Ad_i = r_i$.	$\mathcal{O}(n^2)$	$O(n^{4/3})$	(u_s)
6: Compute $x_{i+1} = x_i + d_i$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	(u)
7: end while			

Fill-in in sparse direct solvers, i.e. $NNZ(A) \ll NNZ(LU)!$

1: Compute the LU factorization $A = \hat{L}\hat{U}$	$\mathcal{O}(n^3)$	$\mathcal{O}(n^2)$	(<i>u_f</i>)
2: Solve $Ax_0 = b$	$\mathcal{O}(n^2)$	$O(n^{4/3})$	(<i>u_f</i>)
3: while not converged do			
4: Compute $r_i = b - Ax_i$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$	(u _r)
5: Solve $Ad_i = r_i$.	$\mathcal{O}(n^2)$	$O(n^{4/3})$	(u _s)
6: Compute $x_{i+1} = x_i + d_i$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	(u)
7: end while			

Fill-in in sparse direct solvers, i.e. $NNZ(A) \ll NNZ(LU)$!

SpMV much cheaper than solve $\Rightarrow u_r \ll u$ has limited impact on performance (even for $u_r = \text{fp128}$).

1: Compute the <i>LU</i> factorization $A = \hat{L}\hat{U}$	$\mathcal{O}(n^3)$	$\mathcal{O}(n^2)$	(<i>u_f</i>)
2: Solve $Ax_0 = b$	$\mathcal{O}(n^2)$	$O(n^{4/3})$	(<i>U</i> _f)
3: while not converged do			
4: Compute $r_i = b - Ax_i$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$	(u _r)
5: Solve $Ad_i = r_i$.	$\mathcal{O}(n^2)$	$O(n^{4/3})$	(u_s)
6: Compute $x_{i+1} = x_i + d_i$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	(u)
7: end while			

Fill-in in sparse direct solvers, i.e. $NNZ(A) \ll NNZ(LU)$!

➤ Memory space of A in u_r negligible compared with the LU factors in $u_f \Rightarrow$ LU-IR3 stores LU factors in precision u_f , direct solver stores in precision u, then LU-IR3 saves memory!

1: Compute the <i>LU</i> factorization $A = \hat{L}\hat{U}$	$\mathcal{O}(n^3)$	$\mathcal{O}(n^2)$	(<i>u_f</i>)
2: Solve $Ax_0 = b$	$\mathcal{O}(n^2)$	$O(n^{4/3})$	(<i>U</i> _f)
3: while not converged do			
4: Compute $r_i = b - Ax_i$	$\mathcal{O}(n^2)$	$\mathcal{O}(n)$	(u _r)
5: Solve $Ad_i = r_i$.	$\mathcal{O}(n^2)$	$O(n^{4/3})$	(u_s)
6: Compute $x_{i+1} = x_i + d_i$	$\mathcal{O}(n)$	$\mathcal{O}(n)$	(u)
7: end while			

Fill-in in sparse direct solvers, i.e. $NNZ(A) \ll NNZ(LU)$!

► If no cast on the fly, GMRES-IR5 needs to store the factors in u_p . GMRES-IR5 saves memory on the active memory even if $u_p = u$!

Algorithm LU-IR3 : complexities Sparse VS Approximations^a

- 1: Compute the LU factorization $A = \hat{L}\hat{U} \mathcal{O}(n^2) \mathcal{O}(n^{\alpha}) (u_f \rho_n + \epsilon)$
- 2: Solve $Ax_0 = b$ $\mathcal{O}(n^{4/3}) \ \mathcal{O}(n^{\beta}) \ (u_f \rho_n + \epsilon)$
- 3: while not converged do
- 4: Compute $r_i = b Ax_i$ $\mathcal{O}(n)$ $\mathcal{O}(n)$ (u_r)
- 5: Solve $Ad_i = r_i$ by $d_i = \hat{U}^{-1}\hat{L}^{-1}r_i$. $\mathcal{O}(n^{4/3})$ $\mathcal{O}(n^{\beta})$ $(u_f\rho_n + \epsilon)$
- 6: Compute $x_{i+1} = x_i + d_i$ $\mathcal{O}(n)$ $\mathcal{O}(n)$ (u)

7: end while

Where
$$2 > \alpha$$
 and $4/3 > \beta$.

> Where ϵ refers to the perturbation introduced, and ρ_n is the growth factor (\approx difference of scale between the values of A and its factors *L* and *U*).

a. Amestoy, Buttari, Higham, L'Excellent, Mary, and Vieublé, *Combining sparse approximate factorizations with mixed precision iterative refinement*, 2022

Theorem (Convergence conditions)

Let Ax = b be solved by LU-IR3 or GMRES-IR5 using an approximate LU factorization. Then the forward error will converge provided that

 $\begin{aligned} (u_f \rho_n + \epsilon) \kappa(A) \ll 1 & (LU - IR3) \\ (u_g + u_p \rho_n \kappa(A)) (u_f \rho_n + \epsilon)^2 \kappa(A)^2 \ll 1 & (GMRES - IR5) \end{aligned}$

Where ϵ refers to the perturbation introduced, and ρ_n is the growth factor (\approx difference of scale between the values of A and its factors L and U).

Remark : This theorem applies for generic numerical approximations, it includes static pivoting and BLR.

Solver	U _f	и	U _r	Ug	u _p	$\max(\kappa(A))$ $(\epsilon=0)$	forward error
DMUMPS	fp6	64 LU	stand	ard so	lver	—	$\kappa(A) imes 10^{-16}$
LU-IR	S	D	D	—	—	2×10^{7}	$\kappa(A) imes 10^{-16}$
GMRES-IR	S	D	D	D	D	1×10^{10}	κ (A) $ imes$ 10 ⁻¹⁶

➤ We use the **multifrontal sparse solver** MUMPS for factorization and LU solve operations.

► LU-IR and GMRES-IR use single precision (fp32) factorization to accelerate. When using BLR and/or static pivoting we name the variants (BLR/STC)-(GMRES/LU)-IR.

Name	Ν	NNZ	Arith.	Sym.	$\kappa(A)$	Fact. (flops)	Slv. (flops)
ElectroPhys10M	1.02E+07	1.41E+08	R	1	1.10E+01	4E+14	9E+10
DrivAer6M	6.11E+06	4.97E+07	R	1	9.40E+05	6E+13	3E+10
Queen_4147	4.14E+06	3.28E+08	R	1	4.30E+06	3E+14	6E+10
tminlet3M	2.84E+06	1.62E+08	С	0	2.70E+07	1E+14	2E+10
perf009ar	5.41E+06	2.08E+08	R	1	3.70E+08	2E+13	2E+10
elasticity-3d	5.18E+06	1.16E+08	R	1	3.60E+09	2E+14	5E+10
lfm_aug5M	5.52E+06	3.71E+07	С	1	5.80E+11	2E+14	5E+10
CarBody25M	2.44E+07	7.06E+08	R	1	8.60E+12	1E+13	3E+10
thmgas	5.53E+06	3.71E+07	R	0	8.28E+13	1E+14	4E+10

Set of **industrial** and SuiteSparse matrices.

The matrices are ordered in increasing $\kappa(A)$, the higher $\kappa(A)$ is, the slower the convergence (if reached at all).

Name	Ν	NNZ	Arith.	Sym.	$\kappa(A)$	Fact. (flops)	Slv. (flops)
ElectroPhys10M	1.02E+07	1.41E+08	R	1	1.10E+01	4E+14	9E+10
DrivAer6M	6.11E+06	4.97E+07	R	1	9.40E+05	6E+13	3E+10
Queen_4147	4.14E+06	3.28E+08	R	1	4.30E+06	3E+14	6E+10
tminlet3M	2.84E+06	1.62E+08	С	0	2.70E+07	1E+14	2E+10
perf009ar	5.41E+06	2.08E+08	R	1	3.70E+08	2E+13	2E+10
elasticity-3d	5.18E+06	1.16E+08	R	1	3.60E+09	2E+14	5E+10
lfm_aug5M	5.52E+06	3.71E+07	С	1	5.80E+11	2E+14	5E+10
CarBody25M	2.44E+07	7.06E+08	R	1	8.60E+12	1E+13	3E+10
thmgas	5.53E+06	3.71E+07	R	0	8.28E+13	1E+14	4E+10

Set of **industrial** and SuiteSparse matrices.

➤ We run on OLYMPE supercomputer nodes (two Intel 18-cores Skylake/node), 1 node (2MPI×18threads) or 2 nodes (4MPI×18threads) depending on the matrix size.

► LU-IR up to 2× faster.

• GMRES-IR slower (requires more LU solves), but more robust on $\kappa(A)$.

- ► LU-IR consumes 2× less memory!
- ➤ GMRES-IR consumes at best 1.7× less despite factors in double ⇒ save active memory.

13/18

Time performance with BLR + static pivoting w.r.t. DMUMPS

tminlet3M

DO BLR-LU-IR DO BLR-GMRES-IR

Time performance with BLR + static pivoting w.r.t. DMUMPS

tminlet3M ($\epsilon_{stc} = 10^{-8}$)

DO BLR-LU-IR DO BLR-GMRES-IR DO BLR-STC-LU-IR DO BLR-STC-GMRES-IR

Gather it all : Best time and memory w.r.t. DMUMPS

 \Rightarrow Up to 5.6 \times faster and 4.4 \times less memory with the same accuracy on the solution than DMUMPS!

Strong scaling (6OMP/MPI) : Time and mem w.r.t. DMUMPS

Weak scaling (180MP/MPI) : Memory/#MPI = cst

Helmholtz

Solve $\mathcal{O}(n^{4/3})$ / Facto $\mathcal{O}(n^2)$

 \Rightarrow Less costly refinement steps as *n* increases.

Weak scaling (180MP/MPI) : Memory/#MPI = cst

elasticity-3d

 \Rightarrow Constant cost of the refinement steps as *n* increases.

Conclusion

Summary

Goal : Solve Ax = b with a sparse direct solver ideally with the least memory and computational time.

Nowadays solutions : Combination of numerical approximations and low precisions.

Drawback : Loss of accuracy on the solution.

Proposal : Use iterative refinement to provide an accurate solution for sparse direct solver at low cost³.

We wish to thank our Industrial partners and the EoCoE project for providing access to their matrices.

^{3.} Amestoy, Buttari, Higham, L'Excellent, Mary, and Vieublé, *Combining sparse approximate factorizations with mixed precision iterative refinement*, 2022