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What is GMRES?

Throughout the presentation, we focus on Algorithm: GM RES(A, b, X, T)
the Generalized Minimal RESidual (GMRES) ReqUire: o ;
algorithm. e1qwre. AeR™" b xoeR", 7€R
2. rg =b—Axg
3 B=|rnll, i =ro/B, k=1
4: repeat
5 wp = Ay
6:
7. fori=1,...,kdo
8: hi = vVIwg
9: Wp = Wp — h,-,,?v,-
10:  end for

M hpgak = IWells Vegr = We/hpya i
120 Vi = [vi,. .o, vl

13t He = {hijh<icjtmsi<k

14 Yk = argminy [|Ber; — Hyy||

15: R=R-+1

16: until Hﬁ& = Hkyh’” <rT

17: Xp = X0 + kak
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. 9: = Wk — hj pv;
> Chooses the vector x in span{V;} Ve = Whe = Ml Vi
L 10:  end for
that minimizes ||Ax, — b]|.
) o - M hegayk = [Wells Vegr = We/Dpya ke
» Reiterate until xy, is a satisfying 120 Ve=[vi,.., vl
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GMRES comes in many flavors

Preconditioning
GMRES might converge too slowly. It is essential to use a preconditioner M that
transforms Ax = b into an “easier” linear system to solve.
M~ 'Ax=M""b (left), Au=b, u=Mx (right)
More possibilities: split preconditioning, non-constant preconditioners (FGMRES).

Example of M: ILU, polynomial, block Jacobi, approximate inverse, an iterative
method, ...

Restart
Principle: under a chosen restart criterion, stop the iteration, erase Vj, restart
GMRES with the initial guess xg = X.

The cost in memory and execution time of an iteration grows as we iterate =
Restart cumulates more iterations while bounding the cost.

Orthogonalization
The Arnoldi process can be constructed with any orthogonalization procedures:
Householder QR, CGS, MGS, CGS2, ...

Warning: Different tradeoffs between numerical stability and performance! 2/15



What is a backward error analysis?

Backward and forward errors
Even for k = n, GMRES computed in finite precision won't deliver the exact solution.
We quantify the quality of the computed solution X}, by the quantities

b — %= bl
TAITRIT+ oIl

[1X = Xell
]

fwd =

“The process of bounding the backward error of a computed solution is
called backward error analysis” N. ). Higham, Accuracy and Stability of Nu-
merical Algorithms.

Why we care?

» Formal proof that the computed solution will always be correct.
» Reveals the sensitivity to rounding errors of the different operations.

» Is needed to derive a backward error analysis of an algorithm using GMRES.
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Existing backward error analysis of GMRES

Bounding the backward and forward error of GMRES is NOT EASY:

» GMRES is a complex algorithm made of different sub-algorithms
— we need a backward error analysis on every sub-algorithm.

» GMRES is an iterative process, bounds on the errors are only
valid from a certain k — we need to answer the question: at which
k the errors are satisfying.

4/15



Existing backward error analysis of GMRES

1995 Householder GMRES
B “Numerical stability of GMRES” by ). DrkoSova, A. Greenbaum,

M. Rozloznik and Z. Strakos, BIT Numerical Mathematics.
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B “Numerical stability of GMRES” by ). DrkoSova, A. Greenbaum,

M. Rozloznik and Z. Strakos, BIT Numerical Mathematics.

2006 ¢ MGS GMRES

B “Modified Gram-Schmidt (MGS), least squares, and backward
stability of MGS-GMRES" by C. C. Paige, M. Rozloznik, and Z.
Strakos, 2006, SIAM SIMAX.

2007-2008 ¢ Flexible MGS GMRES

B “A Note on GMRES Preconditioned by a Perturbed LDLT
Decomposition with Static Pivoting” by M. Arioli, I. S. Duff, S.
Gratton, and S. Pralet, SIAM SISC.

& “Using FGMRES to obtain backward stability in mixed
precision” by M. Arioli and I. S. Duff, ETNA.
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Why do we need a new backward error analysis?

The range of possible variants of GMRES is astonishing!

Number of variants =
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The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...
X Four ways to apply them: left, right, split, flexible.
X Restart or not.
X Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...

X All the “more exotic” techniques: communication avoiding,
randomization, mixed precision, compression of the basis, ...
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Why do we need a new backward error analysis?

=> An almost infinite number of variants...
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Why do we need a new backward error analysis?

... BUT only a tiny subset of them are covered by the previous analyses.

In addition:

» These analyses were not made to be modular = Changing one
element requires redoing a big part of the analysis.

» They are very smart, long, and hard = Understanding and adapting
them is a challenge.
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Why do we need a new backward error analysis?

Consequences:

» A few GMRES variants have error bounds on their computed solution.
» Bounding errors of a new variant is inconvenient and tedious.
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Toward a generic and modular tool

Can we provide an analysis...
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Toward a generic and modular tool

Can we provide an analysis...

» .. that gives the sharpest error bounds?

» .. thatis generic enough to cover “a lot” of possible GMRES variants (i.e.,
different preconditioners, orthogonalization, restart, mixed precision, ...)?

» .. thatis modular (if you change the preconditioner, you do not need to
redo all the analysis)?

» .. thatis easy to use to some extent?
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Toward a generic and modular tool

= We aim to propose a modular and generic backward error analysis tool
for GMRES.
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Generic GMRES: an abstract algorithm

Algorithm: GEN-GMRES(A, b, M, Z),)

1. Compute C, = AZ, where A = M~ 'A.
2: Compute b = M;'b.

3: Solve yp, = argmin, b = Cryll-

4 Compute the approximant x, = Zyys.
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1. Compute C, = AZ, where A = M~ 'A.
2: Compute b = M;'b.

3: Solve yp, = argmin, b = Cryll-

4 Compute the approximant x, = Zyys.

Principle: Finding x, € span{Z;} minimizing the left-preconditioned residual

||b — Ax||.

» Little assumptions on the » Do not assume Arnoldi process.
operations. » Not presented as an iterative
» 7, can be any basis of rank k. process.

» Can be seen as a subspace projection method solving the
left-preconditioned system in span{Z:}, where the left-preconditioner M,
the basis Z;, and the least squares solver are not specified.
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3: Solve yp, = argmin, b = Cryll-

4 Compute the approximant x, = Zyys.

Specialization to:

Algorithm: MGS GMRES

1. Compute Cp = AVk, where M; = | and V,? is the computed Arnoldi basis.
2:

3: Solve y, = argmin, ||b — AVuy|| by MGS Arnoldi.

4: Compute the approximant X, = ViVx.
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2: Compute b = M;'b.

3: Solve yp, = argmin, b = Cryll-

4 Compute the approximant x, = Zyys.

Specialization to:

Algorithm: with left- LU preconditioner

Cr = AV A=U\L\A
b=U\L\b.
Yk = argmin, ||b — AVyy||
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Generic GMRES: an abstract algorithm

Algorithm: GEN-GMRES(A, b, M, Z),)

1. Compute C, = AZ, where A = M~ 'A.
2: Compute b = M;'b.

3: Solve yp, = argmin, b = Cryll-

4 Compute the approximant x, = Zyys.

Specialization to:

Algorithm: CGS2 flexible LU preconditioner
Ce = AZ, M, = I and Z, = U\L\V,

Yk = argmin, ||b — AZyy|| by CGS2 Arnoldi
Xk = ZkYk
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Generic GMRES: an abstract algorithm

Algorithm: GEN-GMRES(A, b, M, Z),)

1. Compute C, = AZ, where A = M~ 'A.
2: Compute b = M;'b.

3: Solve yp, = argmin, b = Cryll-

4 Compute the approximant x, = Zyys.

GEN-GMRES is an abstract generic algorithm that can be specialized to many
GMRES algorithms = Any result on GEN-GMRES holds for its specializations.

Our goal: Make a backward error analysis of GEN-GMRES.

One analysis to rule them all!
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Generic rounding error model

The terms ¢;, €5, €15, and e; quantify the accuracies of every operation and are
unspecified. They are only specified for a given specialization of GEN-GMRES.

Matrix-matrix product with the basis (step 2)

fI(AZy,) = AZy + Bz, 1Az, Il < exllAZll.

Preconditioned RHS (step 3)

fI(M'b) =b+Ab,  ||AD|| < &l[b]l.

Least squares solution (step 4)
Vi, = argmin, ||b + Ab’ — (fI(AZ;,) + A

IAb’, A%, lejll < esllib, FI(AZe)ejl|

Compute the kth approximant (step 5)

Xe = F1(ZVk) = (Zk + AZk )Yk, |AZk|| < ez]|Zll /
8/15



A key dimension(/iteration)

We need to define the special dimension(/iteration) k at which we can
demonstrate that the computed solution has attained a satisfying error.

Key dimension
We define the key dimension k as the first k < n such that, for all ¢ > 0, we
have
omin([b, AZi]) < (€5 + e + €:)l|[bg, AZ]ll
and
Omin(AZr) > (€1 + € + €5)||AZk|lF-

The philosophy of these conditions is to capture the exact moment where b
lies in the range of AZ, which is the moment where the basis 7, contains the
solution.

& “Modified Gram-Schmidt (mgs), least squares, and backward stability of
MGS-GMRES” by C. C. Paige, M. RozlozZnik, and Z. Strako$, 2006, SIAM SIMAX.
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Erro unds of GEN-GMRES

Theorem
Consider the solution of a nonsingular linear system
Ax=b, AcR™" 0#£becR",

with GEN-GMRES under the previous error model. If there exists a key dimension k
as defined previously, then, GEN-GMRES produces a computed solution X, whose
backward and forward error satisfies respectively

[ — AXe|l X — | =
S kM), S ®k(A),
b1+ AT IXe lIxIl
where
d = ae; + Bep + Bes + Ae;
with
||AZkH [[AZ||
[ = max —), A=o0 Z
= orin(Ze) T (1,0n(Zk) 7l ) Trnin ) 1Ze -
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How to use?

How to use the previous result to derive forward and backward error bounds
for real GMRES algorithms?
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Using the previous theorem requires some work:

» Show that your algorithm is a specialization of GEN-GMRES.

» Determine ¢;, €,, €5, and e€,. The difficulty of this step varies according
to the existing literature of the sub-algorithms used.

» Show the existence of the key dimension. The difficulty also varies
according to the existing literature.

1/15



How to use?

How to use the previous result to derive forward and backward error bounds
for real GMRES algorithms?

Using the previous theorem requires some work:

» Show that your algorithm is a specialization of GEN-GMRES.

» Determine ¢;, €,, €5, and e€,. The difficulty of this step varies according
to the existing literature of the sub-algorithms used.

» Show the existence of the key dimension. The difficulty also varies
according to the existing literature.

This Theorem is backward compatible with the previous analyses: Applying
it on Householder GMRES, MGS GMRES, and Flexible MGS GMRES gives the
same results as the existing analyses.

1/15



Error model for restarted GEN-GMRES

Algorithm: Restarted GEN-GMRES(A, b, M,)

1 Initialize xo

2: repeat

3 Compute ri = Ax; — b.

4 Solve Ad; = r; with GEN-GMRES.

5. Compute the approximant xi., = X; + di.
6: until convergence
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Error model for restarted GEN-GMRES

Algorithm: Restarted GEN-GMRES(A, b, M)

1 Initialize xo

2: repeat

3 Compute ri = Ax; — b.

4 Solve Ad; = r; with GEN-GMRES.

5. Compute the approximant xi., = X; + di.
6: until convergence

Residual computation (step 3)

Ti=b—AX+Ar,  |An] < e (lb]+ |AlX]).

Restart update (step 5)

5<\i+125<\i+di+AXh ‘AXi|§€U|S<\i+1|'

12/15



Error bounds of restarted GEN-GMRES

Theorem
Consider the solution of a nonsingular linear system
Ax=b, AeR™" 0#4beR",

with restarted GEN-GMRES under the previous error models. If, for each restart, the
conditions of the previous Theorem (for GEN-GMRES) are met, then it exists an
iteration i such that restarted GEN-GMRES produces a computed X; satisfying
b — AX]|
61+ AN —
provided that for all i

I[xi — Il

+ e, and
[Ix]

cond(A, X) + eu,

oi( H/\/I‘I‘Q‘I‘lAH w(A) + k(M) < 1 (backward) and ®;x(A) <1 (forward),
where
‘b,‘ = Qj€Ex =+ 6[6 + ﬂ,‘é < —|— )\[62
with
N ] 1Az :
o = ml‘l]( ’)) ”AkH ) 51 = maX(1 O'mm(zg) HZ*?H )7 A = m|1n( (l )HZ H
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What about mixed precision?

No mixed precision in this presentation so far!

® Give the money back! @
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What about mixed precision?

Crazy number of mixed precision GMRES algorithms:

» Hartwig Anzt, Vincent Heuveline, and Bjorn Rocker, “An Error Correction Solver for Linear
Systems: Evaluation of Mixed Precision Implementations”, 2011.

» Mario Arioli, lain S. Duff, Serge Gratton, and Stéphane Pralet, “A Note on GMRES
Preconditioned by a Perturbed LDLT Decomposition with Static Pivoting”, 2007.

» Erin Carson and Nicholas ). Higham, “A new analysis of iterative refinement and its
application to accurate solution of ill-conditioned sparse linear systems”, 2017.

» Erin Carson and Noaman Khan, “Mixed Precision Iterative Refinement with Sparse
Approximate Inverse Preconditioning”, 2022.

» Neil Lindquist, Piotr Luszczek, and Jack Dongarra, “Improving the performance of the GMRES
method using mixed-precision techniques”, 2020.

» Jennifer A. Loe, Christian A. Glusa, Ichitaro Yamazaki, Erik G. Boman, and Sivasankaran
Rajamanickam, “A Study of Mixed Precision Strategies for GMRES on GPUS", 2021.

» José Aliaga, Hartwig Anzt, Thomas Griitzmacher, Enrique Quintana-Orti, and Andrés Tomas,
“Compressed basis GMRES on high performance GPUs", 2020.

A lot of them are not covered by a backward error analysis!
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What about mixed precision?

Our framework has been designed to facilitate backward error analyses of
mixed precision GMRES:

» Mixed precision at the preconditioner level: only need to study the
accuracy of the product M;AZ,.

» Mixed precision at the orthogonalization level: only need to study the
accuracy of the orthogonalization process and evaluate the loss of
orthogonality on the basis.

» Mixed precision at the restart level: only need to consider at which
precision the residual, the update and the GMRES solver are computed.

» Mixed precision in every of these parts works as well.

= Goal: Help keep up backward error analysis coverage of the increasing
number of mixed precision GMRES algorithms.
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Conclusion

Takeaways

» Many GMRES variants not covered by a backward error analysis.

» We propose a backward error analysis framework to efficiently
derive error bounds on new variants.

» We can apply this framework on most existing mixed precision
GMRES.

It is still an ongoing work. Preprint will be available soon.
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