
Mixed precision iterative refinement for the
solution of large sparse linear systems

Speaker: Bastien Vieublé
Supervisors: Alfredo Buttari and Théo Mary
30/11/2022

INPT-IRIT, Toulouse

Solving Large Sparse Linear
Systems

Context

→ →

Sparse Linear System Ax = b
At the foundations of many scientific computing applications (e.g., discretization of
PDEs).

Large-scale sparse linear systems...
Up to billions of unknowns, applications demanding TeraBytes of memory and
Exaflops of computation.

...require large-scale computers.
Increasingly large numbers of cores available, high heterogeneity in the
computation (CPU, GPU, FPGA, TPU, etc), and high heterogeneity in data motions
(RAM to cache, out-of-core, node to node transfer, etc).

1/47

Solvers

What are the ways to solve a sparse Ax = b ∈ Rn on computers?

Iterative solvers
Compute a sequence of xk converging towards x.

Examples: Gauss-Seidel, SOR, Krylov subspace methods, etc.

ä Low computational cost and memory consumption if the convergence is
quick (about O(n) operations per iteration)...

ä BUT convergence depends on the matrix properties.

Direct solvers
Based on a factorization of A.

Examples: LDLT, LU, QR, etc.

ä High computational cost and memory consumption...

ä BUT they are robust and easy to use.

⇒ For both, the reduction of the computational cost is the focus of much research.

2/47

Solvers

What are the ways to solve a sparse Ax = b ∈ Rn on computers?

Iterative solvers
Compute a sequence of xk converging towards x.

Examples: Gauss-Seidel, SOR, Krylov subspace methods, etc.

ä Low computational cost and memory consumption if the convergence is
quick (about O(n) operations per iteration)...

ä BUT convergence depends on the matrix properties.

Direct solvers
Based on a factorization of A.

Examples: LDLT, LU, QR, etc.

ä High computational cost and memory consumption...

ä BUT they are robust and easy to use.

⇒ For both, the reduction of the computational cost is the focus of much research. 2/47

Reduce the cost by reducing the complexity

Approximate computing: deliberately approximate the
computations in order to improve the performance at the cost of
introducing a perturbation.

ä The perturbed problem should be close to the original
one and should reduce time and/or memory!

ä In general the larger the perturbations the larger the
savings...

ä BUT large perturbations = low accuracy!

In this PhD we explore two approximate computing techniques: low
precision arithmetics, numerical approximations.

3/47

Low precision arithmetics

Commonly available arithmetics

ID Signif. bits Exp. bits Range Unit roundoff u

fp128 Q 113 15 10±4932 1× 10−34

double-fp64 DD 107 11 10±308 6× 10−33

fp64 D 53 11 10±308 1× 10−16

fp32 S 24 8 10±38 6× 10−8

tfloat32 T 11 8 10±38 5× 10−4

fp16 H 11 5 10±5 5× 10−4

bfloat16 B 8 8 10±38 4× 10−3

fp8 (E4M3) R 4 4 10±2 6.3× 10−2

fp8 (E5M2) R* 3 5 10±5 1.3× 10−1

ä The unit roundoff is the largest relative distance between any
number and its closest floating point representation.

ä The range is the interval of representable numbers by a given
arithmetic.

ä Recent announcement of 8-bit arithmetics: fp8 E4M3 and E5M2. 4/47

Why using low precision arithmetics?

Low precision arithmetics are less accurate and present a narrower
range. BUT there are 3 main benefits of using low precision
arithmetics:

ä Storage, data movement and communications are all
proportional to the total number of bits. ⇒ Time and
memory savings!

ä Speed of computation is also at least proportional to the
total number of bits. ⇒ Time savings!

ä Power consumption is dependent on the number of bits1.
⇒ Energy savings!

1Tong, Nagle and Rutenbar, Reducing power by optimizing the necessary precision/range of
floating-point arithmetic, 2000 5/47

Numerical approximations

What is a numerical approximation?

Numerical approximations refer to a class of approaches that relax
certain constraints on the quality of the solution at the algorithm
level to leverage resource savings.

ä They are independent of the floating point arithmetic used.

ä They introduce arbitrary or controllable perturbations that
affect the accuracy of the solution.

ä Many numerical approximations exist on various kinds of
algorithms.

We focus on two examples of numerical approximations for direct
solvers: block low-rank and static pivoting.

6/47

Numerical approximations: Block Low-Rank

Block Low-Rank: Decompose dense matrices into regular blocks of size b.
Try to compress each block with a low rank approximation at precision ϵBLR.

7/47

Numerical approximations: Block Low-Rank

Block Low-Rank: Decompose dense matrices into regular blocks of size b.
Try to compress each block with a low rank approximation at precision ϵBLR.

Flops Memory

Classic2 O(n3) O(n2)

BLR3 O(n2.5) O(n1.5)

Complexities of dense factorization

2J. A. George, Nested dissection of a regular finite element mesh, 1973
3Amestoy, Buttari, L’Excellent, and Mary, On the Complexity of the Block Low-Rank Multifrontal
Factorization, 2017 7/47

Numerical approximations: Block Low-Rank

Block Low-Rank: Decompose dense matrices into regular blocks of size b.
Try to compress each block with a low rank approximation at precision ϵBLR.

Flops Memory

Classic O(n3) O(n2)

BLR O(n2.5) O(n1.5)

Complexities of dense factorization

Pros:
ä Reduction of asymptotic
complexity...
ä ... which is translated in time
and memory savings!

Cons:
ä Introduce a perturbation ϵBLR.
ä Compression is problem
dependent.

7/47

Numerical approximations: Static pivoting

Numerical pivoting is essential for stability and accuracy of direct linear
solvers. Different methods exist, they achieve different trade-offs.

ak,k

aj,k

L
U

Step k

|ajk | = max
l∈{k,n}

|al,k|

Partial Pivoting

ϵSTC

...

Step k

if |ak,k| < ϵSTC

L
U

Static Pivoting2

2X. S. Li and J. W. Demmel, A Scalable Sparse Direct Solver Using Static Pivoting, 1998
8/47

Numerical approximations: Static pivoting

Numerical pivoting is essential for stability and accuracy of direct linear
solvers. Different methods exist, they achieve different trade-offs.

ak,k

aj,k

L
U

Step k

|ajk | = max
l∈{k,n}

|al,k|

Partial Pivoting

ϵSTC

...

Step k

if |ak,k| < ϵSTC

L
U

Static Pivoting

Pros:
ä More BLAS 3. ä No communication for synchronization.

Cons:
ä Large ϵSTC less accuracy. ä Small ϵSTC less stability.

8/47

The fundamental issue of approximate computing

Problem

ä Low precision arithmetics and approximations can greatly improve
performance of sparse linear solvers...

ä BUT they degrade their accuracy at the same time.

ä Unfortunately application experts generally require high accuracy on
the solution (i.e. most commonly double precision accuracy).

Idea: What if we could use low precisions and approximations to accelerate
the most expensive parts of the computation, and use higher precision only
on some strategic operations to recover the lost accuracy at low cost?

⇒ This is the goal of mixed precision algorithms!

9/47

The fundamental issue of approximate computing

Problem

ä Low precision arithmetics and approximations can greatly improve
performance of sparse linear solvers...

ä BUT they degrade their accuracy at the same time.

ä Unfortunately application experts generally require high accuracy on
the solution (i.e. most commonly double precision accuracy).

Idea: What if we could use low precisions and approximations to accelerate
the most expensive parts of the computation, and use higher precision only
on some strategic operations to recover the lost accuracy at low cost?

⇒ This is the goal of mixed precision algorithms!

9/47

Mixed precision iterative
refinement(s) for LU direct solver

LU-IR3: Recover the accuracy on linear systems

Algorithm LU-based iterative refinement in three precisionsa

1: Compute the LU factorization A = LU (uf)

2: Solve Ax0 = b (uf)

3: while not converged do
4: Compute ri = b− Axi (ur)

5: Solve Adi = ri by di = Û−1L̂−1ri (uf)

6: Compute xi+1 = xi + di (u)
7: end while

The strategy is to accelerate with low precisions and/or numerical approxi-
mations the sparse factorization O(n2) and recover a high accuracy by using
refinement iterations O(n4/3) in higher precisions.

aE. Carson and N. J. Higham, Accelerating the solution of linear systems by iterative
refinement in three precisions, 2018

10/47

LU-IR3: Recover the accuracy on linear systems

Algorithm LU-based iterative refinement in three precisionsa

1: Compute the LU factorization A = LU O(n3) (uf)

2: Solve Ax0 = b O(n2) (uf)

3: while not converged do
4: Compute ri = b− Axi O(n2) (ur)

5: Solve Adi = ri by di = Û−1L̂−1ri O(n2) (uf)

6: Compute xi+1 = xi + di O(n) (u)
7: end while

The strategy is to accelerate with low precisions and/or numerical approxi-
mations the factorization O(n3) and recover a good accuracy by using higher
precisions for the residual and update O(n2).

aE. Carson and N. J. Higham, Accelerating the solution of linear systems by iterative
refinement in three precisions, 2018

10/47

LU-IR3: Recover the accuracy on linear systems

Algorithm LU-based iterative refinement in three precisions
1: Compute the LU factorization A = LU O(n3) (uf)

2: Solve Ax0 = b O(n2) (uf)

3: while not converged do
4: Compute ri = b− Axi O(n2) (ur)

5: Solve Adi = ri by di = Û−1L̂−1ri O(n2) (uf)

6: Compute xi+1 = xi + di O(n) (u)
7: end while

Convergence condition Forward error

LU-IR3 κ(A)uf ≪ 1 urκ(A) + u

Limit: Very low precision factorization leads to a very restrictive convergence
condition for LU-IR3 (e.g. with uf = fp16 we have κ(A) ≪ 2× 103).

10/47

LU-GMRES-IR3: Get more robust

Algorithm GMRES-based iterative refinement in three precisionsa

1: Compute the LU factorization A = LU (uf)

2: Solve Ax0 = b (uf)

3: while not converged do
4: Compute ri = b− Axi (ur)

5: Solve Ãdi = Û−1L̂−1Adi = Û−1L̂−1ri by GMRES at precision (u)
with matrix vector products with Ã at precision (u2)

6: Compute xi+1 = xi + di (u)
7: end while

ä LU-GMRES-IR3 is a more robust form of iterative refinement capable
of tackling higher condition numbers κ(A) than LU-IR3.
ä Based on GMRES solver which is a well-known Krylov subspace based
iterative solver.

aE. Carson and N. J. Higham, A new analysis of iterative refinement and its application
to accurate solution of ill-conditioned sparse linear systems, 2017 11/47

LU-GMRES-IR3: Get more robust

Algorithm GMRES-based iterative refinement in three precisions
1: Compute the LU factorization A = LU (uf)

2: Solve Ax0 = b (uf)

3: while not converged do
4: Compute ri = b− Axi (ur)

5: Solve Ãdi = Û−1L̂−1Adi = Û−1L̂−1ri by GMRES at precision (u)
with matrix vector products with Ã at precision (u2)

6: Compute xi+1 = xi + di (u)
7: end while

Convergence condition Forward error

LU-IR3 κ(A)uf ≪ 1 urκ(A) + u
LU-GMRES-IR3 κ(A)u1/2uf ≪ 1 urκ(A) + u

Example: If uf = fp16, the condition on LU-IR3 is 2 × 103, on LU-GMRES-IR3 it
is 2× 1011!

11/47

Promises and open questions

Theoretical promises of modern IR

ä Can use low precisions to accelerate the computation of the solution of
sparse systems.

ä Recover high accuracy at low cost (forward error = 10−16).

ä Process ill-conditioned matrices (i.e. big κ(A)).

Major open questions:
1. Is the application of the preconditioned matrix–vector product in precision u2

costless in LU-GMRES-IR3? If not, can we trade off robustness and performance
by relaxing the requirements on the precisions in LU-GMRES-IR3?

2. How can we efficiently translate the theoretical complexity reduction in actual
performance gains for the parallel direct solution of large sparse systems and
how to combine them with numerical approximations?

3. How these modern IR algorithms, focused on the improvement of direct
solvers, can be extended for the improvement of iterative solvers (in particular
Krylov subspace based solvers)? 12/47

Promises and open questions

Theoretical promises of modern IR

ä Can use low precisions to accelerate the computation of the solution of
sparse systems.

ä Recover high accuracy at low cost (forward error = 10−16).

ä Process ill-conditioned matrices (i.e. big κ(A)).

Major open questions:
1. Is the application of the preconditioned matrix–vector product in precision u2

costless in LU-GMRES-IR3? If not, can we trade off robustness and performance
by Relaxing the requirements on the precisions in LU-GMRES-IR3?

2. How can we efficiently translate the theoretical complexity reduction in actual
Performance gains for the parallel direct solution of large sparse systems and
how to combine them with numerical approximations ?

3. How these Modern IR algorithms, focused on the improvement of direct
solvers, can be extended for the improvement of iterative solvers (in particular
Krylov subspace based solvers)? 12/47

Relax the precisions of
LU-GMRES-IR3

Practical issues of LU-GMRES-IR3

LU-GMRES-IR3 is more robust on κ(A) than LU-IR3. However, the LU solves
are performed in precision u2 for the application of the preconditioner: this
is a major practical issue.

ä It increases cost per iteration compared with LU-IR3.

ä If u = fp64 then u2 = fp128 ⇒ It requires a quad precision LU solver
(not widely available on commonly used parallel sparse direct solvers).
Moreover, if fp128 is not supported by the hardware, it can be really slow.

ä Need to cast the LU factors from precision uf to precision u2 ⇒
Huge memory consumption increase if we keep a full copy of the factors.

Other issue: Do we need to run the other GMRES operations in precision u?

⇒ Can we relax the precision u2 on the preconditioning and u on the rest of
the operations?

13/47

Practical issues of LU-GMRES-IR3

LU-GMRES-IR3 is more robust on κ(A) than LU-IR3. However, the LU solves
are performed in precision u2 for the application of the preconditioner: this
is a major practical issue.

ä It increases cost per iteration compared with LU-IR3.

ä If u = fp64 then u2 = fp128 ⇒ It requires a quad precision LU solver
(not widely available on commonly used parallel sparse direct solvers).
Moreover, if fp128 is not supported by the hardware, it can be really slow.

ä Need to cast the LU factors from precision uf to precision u2 ⇒
Huge memory consumption increase if we keep a full copy of the factors.

Other issue: Do we need to run the other GMRES operations in precision u?

⇒ Can we relax the precision u2 on the preconditioning and u on the rest of
the operations?

13/47

LU-GMRES-IR5

Algorithm LU-GMRES-IR3
1: Compute the LU factorization A = LU (uf)

2: Solve Ax0 = b (uf)

3: while not converged do
4: Compute ri = b− Axi (ur)

5: Solve Ãdi = Û−1L̂−1Adi = Û−1L̂−1ri by GMRES at precision (u)

with matrix vector products with Ã at precision (u2).
6: Compute xi+1 = xi + di (u)
7: end while

14/47

LU-GMRES-IR5

Algorithm LU-GMRES-IR3
1: Compute the LU factorization A = LU (uf)

2: Solve Ax0 = b (uf)

3: while not converged do
4: Compute ri = b− Axi (ur)

5: Solve Ãdi = Û−1L̂−1Adi = Û−1L̂−1ri by GMRES at precision (u)
with matrix vector products with Ã at precision (u2).

6: Compute xi+1 = xi + di (u)
7: end while

14/47

LU-GMRES-IR5

Algorithm LU-GMRES-IR5
1: Compute the LU factorization A = LU (uf)

2: Solve Ax0 = b (uf)

3: while not converged do
4: Compute ri = b− Axi (ur)

5: Solve Ãdi = Û−1L̂−1Adi = Û−1L̂−1ri by GMRES at precision (ug)
with matrix vector products with Ã at precision (up).

6: Compute xi+1 = xi + di (u)
7: end while

ä up : precision at which we apply the preconditioned
matrix-vector products.

ä ug : precision at which we apply the other GMRES operations.

Remark: Possibly up > u2 (and ug > u).
14/47

A key result in the error analysis

Theorem (Stability of preconditioned MGS-GMRES in 2 precisions)
Consider solving a preconditioned linear system

Ãd = s, Ã = Û−1L̂−1A, A ∈ Rn×n,

with a MGS-GMRES in precision ug except for the products with Ã applied in
precision up.

The computed solution d̂ achieves a backward error of order

ug + upκ(A)

⇒ It generalizes the backward stability of MGS-GMRES2 to a
preconditioned MGS-GMRES in 2 precisions.

2Paige, Rozložník and Strakoš, Modified Gram-Schmidt (MGS), least squares, and backward
stability of MGS-GMRES, 2006 15/47

Convergence condition of LU-GMRES-IR5

Convergence condition Forward error

LU-IR3 κ(A)uf ≪ 1 urκ(A) + u
LU-GMRES-IR5 (ug + upκ(A))κ(A)2u2

f ≪ 1 urκ(A) + u
LU-GMRES-IR3 κ(A)u1/2uf ≪ 1 urκ(A) + u

If uf = fp16, the condition on LU-IR3 is 2× 103, on LU-GMRES-IR3 it is
2× 1011, and on LU-GMRES-IR5 with ug = up = fp64 it is 3× 107.

16/47

Meaningful combinations

With six arithmetics (fp8, bfloat16, fp16, fp32, fp64, fp128), LU-GMRES-IR5 can
be declined in over 15000 different combinations!

They are not all relevant.

Filter principle: Useless to have high precision when we can use low
precision without impacting the numerical properties.

Filtering rules

ä u2 ≤ ur ≤ u ≤ uf

ä up ≤ ug

ä up < uf

ä up < u, up = u, and up > u

ä ug = u and ug > u

ä ug < uf, ug = uf, and ug > uf

Remark: These rules are based on the limiting accuracy of the forward error
and the convergence condition formulas.

17/47

Theoretical robustness over κ(A)

ug up
Convergence Condition

(max(κ(A)))

LU-IR3 2× 103

R S 8× 103

B S 3× 104

H S 4× 104

H D 9× 104

S D 8× 106

D D 3× 107

LU-GMRES-IR3 2× 1011

Meaningful combinations of LU-GMRES-IR5 for uf = H and u = D.

ä LU-GMRES-IR5 is a trade-off between LU-IR3 and LU-GMRES-IR3.
ä The more we increase the precisions ug and up, the more robust we are.
ä LU-GMRES-IR5 is flexible regarding the conditioning of the problems
and the choice of precisions. 18/47

Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

20%
40%
60%
80%
100%

κ(A)

ug = D

LU-IR

Percentage of convergence according to the condition number κ(A).
We fix uf = fp16, u = fp64, and ur = fp128. The matrices are randomly
generated with randsvd(mode=2). The percentage for each κ(A) is
computed from 100 matrices.

19/47

Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

20%
40%
60%
80%
100%

κ(A)

ug = D

LU-IR

up = Q

Percentage of convergence according to the condition number κ(A).
We fix uf = fp16, u = fp64, and ur = fp128. The matrices are randomly
generated with randsvd(mode=2). The percentage for each κ(A) is
computed from 100 matrices.

19/47

Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

20%
40%
60%
80%
100%

κ(A)

ug = D

LU-IR

up = D
up = Q

Percentage of convergence according to the condition number κ(A).
We fix uf = fp16, u = fp64, and ur = fp128. The matrices are randomly
generated with randsvd(mode=2). The percentage for each κ(A) is
computed from 100 matrices.

19/47

Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

20%
40%
60%
80%
100%

κ(A)

ug = D

LU-IR
up = S
up = D
up = Q

Percentage of convergence according to the condition number κ(A).
We fix uf = fp16, u = fp64, and ur = fp128. The matrices are randomly
generated with randsvd(mode=2). The percentage for each κ(A) is
computed from 100 matrices.

19/47

Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

20%
40%
60%
80%
100%

κ(A)

ug = S

LU-IR
up = S
up = D
up = Q

Percentage of convergence according to the condition number κ(A).
We fix uf = fp16, u = fp64, and ur = fp128. The matrices are randomly
generated with randsvd(mode=2). The percentage for each κ(A) is
computed from 100 matrices.

19/47

Experimental robustness over κ(A)

100 102 104 106 108 1010 1012 1014 1016

20%
40%
60%
80%
100%

κ(A)

ug = H

LU-IR
up = S
up = D
up = Q

Percentage of convergence according to the condition number κ(A).
We fix uf = fp16, u = fp64, and ur = fp128. The matrices are randomly
generated with randsvd(mode=2). The percentage for each κ(A) is
computed from 100 matrices.

19/47

Conclusion on LU-GMRES-IR5

Contributions
ä New algorithm: LU-GMRES-IR5 which relaxes restrictive requirements
on the precisions in LU-GMRES-IR3.
ä Error analysis: New convergence condition for LU-GMRES-IR5 that
demonstrates a high versatility regarding trade-offs between perfor-
mance, problem difficulty, and hardware constraints.
ä Numerical experiments: Validate the theoretical convergence condi-
tion.

Amestoy, Buttari, Higham, L’Excellent, Mary, Vieublé. “ Five-Precision GMRES-based
iterative refinement”. In: Submitted to a journal, preprint available on HAL (ID: hal-
03190686).

Next: LU-GMRES-IR5 is better suited for the solution of large sparse
problems since up ≥ u2. BUT we still need to consider the combined use of
state-of-the-art iterative refinements with state-of-the-art sparse
factorizations. 20/47

Error and performance analysis
of LU-IR3 and LU-GMRES-IR5 on
sparse systems with numerical
approximations

LU Sparse Direct Factorization: Fill-in

A multifrontal sparse factorization can be decomposed into a series of
factorizations of dense matrices whose dependencies are represented by an
assembly tree:

• • • •
• • • • •

• • • • •
• • • • • •

• • • • • •
• • • • • •

• • • • • •
• • • • • •

• • • • • •
• • • • • • •

• • • • • • •
• • • • • • •

• • • • • • •
• • • • • • •

• • • • • • •
• • • • • • •

• • • • • • •
• • • • • • •

• • • • • •
• • • • • •

• • • • • •
• • • • • •

• • • • • •
• • • • • •

• • • • •
• • • • •

• • • •

A

→

• • • •
• • • • • • •

• • • • • • • •
• • • • • • • • • • •

• • • • • • • • • • • •
• • • • • • • • • • • • •

• • • • • • • • • • • • •
• • • • • • • • • • • • •

• • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • •

• • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • •

• • • • • • • • • • • • • •
• • • • • • • • • • • • •

• • • • • • • • • • • •
• • • • • • • • • • •

• • • • • • • • • •

LU
(fill-in)

ä The red parts are the LU entries, the green part are temporary data.
ä In multifrontal factorization the total memory consumption is higher than
the factors in memory. The difference is called the active memory overhead.

21/47

Multifrontal LU Sparse Direct Factorization

A multifrontal sparse factorization can be decomposed into a series of
factorizations of dense matrices whose dependencies are represented by an
assembly tree:

• • • •
• • • • •

• • • • •
• • • • • •

• • • • • •
• • • • • •

• • • • • •
• • • • • •

• • • • • •
• • • • • • •

• • • • • • •
• • • • • • •

• • • • • • •
• • • • • • •

• • • • • • •
• • • • • • •

• • • • • • •
• • • • • • •

• • • • • •
• • • • • •

• • • • • •
• • • • • •

• • • • • •
• • • • • •

• • • • •
• • • • •

• • • •

A

→

ä The red parts are the LU entries, the green part are temporary data.
ä In multifrontal factorization the total memory consumption is higher than
the factors in memory. The difference is called the active memory overhead.

22/47

Specific features of sparse iterative refinement

Algorithm Iterative refinement: complexities Dense VS Sparse
1: Compute the LU factorization A = LU O(n3) O(n2) (uf)

2: Solve Ax0 = b O(n2) O(n4/3) (uf)

3: while not converged do
4: Compute ri = b− Axi O(n2) O(n) (ur)

5: Solve Adi = ri. O(n2) O(n4/3) (us)

6: Compute xi+1 = xi + di O(n) O(n) (u)
7: end while

Fill-in in sparse direct solvers, i.e. NNZ(A) ≪ NNZ(LU)!

23/47

Specific features of sparse iterative refinement

Algorithm Iterative refinement: complexities Dense VS Sparse
1: Compute the LU factorization A = LU O(n3) O(n2) (uf)

2: Solve Ax0 = b O(n2) O(n4/3) (uf)

3: while not converged do
4: Compute ri = b− Axi O(n2) O(n) (ur)

5: Solve Adi = ri. O(n2) O(n4/3) (us)

6: Compute xi+1 = xi + di O(n) O(n) (u)
7: end while

Fill-in in sparse direct solvers, i.e. NNZ(A) ≪ NNZ(LU)!

ä SpMV much cheaper than solve ⇒ ur ≪ u has limited impact
on performance (even for ur = fp128).

23/47

Specific features of sparse iterative refinement

Algorithm Iterative refinement: complexities Dense VS Sparse
1: Compute the LU factorization A = LU O(n3) O(n2) (uf)

2: Solve Ax0 = b O(n2) O(n4/3) (uf)

3: while not converged do
4: Compute ri = b− Axi O(n2) O(n) (ur)

5: Solve Adi = ri. O(n2) O(n4/3) (us)

6: Compute xi+1 = xi + di O(n) O(n) (u)
7: end while

Fill-in in sparse direct solvers, i.e. NNZ(A) ≪ NNZ(LU)!

ä Memory space of A in ur (O(n) entries) negligible compared
with the LU factors in uf (O(n4/3) entries)⇒ LU-IR3 saves memory
over a direct solver in u!

23/47

Specific features of sparse iterative refinement

Algorithm Iterative refinement: complexities Dense VS Sparse
1: Compute the LU factorization A = LU O(n3) O(n2) (uf)

2: Solve Ax0 = b O(n2) O(n4/3) (uf)

3: while not converged do
4: Compute ri = b− Axi O(n2) O(n) (ur)

5: Solve Adi = ri. O(n2) O(n4/3) (us)

6: Compute xi+1 = xi + di O(n) O(n) (u)
7: end while

Fill-in in sparse direct solvers, i.e. NNZ(A) ≪ NNZ(LU)!

ä (Multifrontal only) Even if LU-GMRES-IR5 fully stores the factors
in up = u, it does not need to store the active memory in up = u
⇒ LU-GMRES-IR5 can save memory over a direct solver in u.

23/47

Specific features of approximate factorization

Algorithm LU-IR3: complexities Sparse VS Approximations
1: Compute the LU factorization A = L̂Û O(n2) O(nα) (?)

2: Solve Ax0 = b O(n4/3) O(nβ) (?)

3: while not converged do
4: Compute ri = b− Axi O(n) O(n) (ur)

5: Solve Adi = ri by di = Û−1L̂−1ri. O(n4/3) O(nβ) (?)

6: Compute xi+1 = xi + di O(n) O(n) (u)
7: end while

ä Where 2 ≥ α and 4/3 ≥ β.
ä Question: What can be said on the accuracy of the factorization
and the solve?

24/47

Error analysis with numerical approximations

Two main changes on the accuracies compared with classic LU with
partial pivoting:

ä Need to handle numerical approximations ⇒ We consider a
generic model of numerical approximations introducing a
perturbation ϵ. It includes BLR and static pivoting.

ä We must take into account the growth factor ρn (≈ difference
of scale between the entries of A and its factors L and U) which
might not be negligible without stable pivoting strategy.

Theorem (Convergence conditions)
Let Ax = b be solved by LU-IR3 or GMRES-IR5 using an approximate LU
factorization. Then the forward error will converge provided that

(ufρn + ϵ)κ(A) ≪ 1 (LU− IR3)
(ug + upρnκ(A))(ufρn + ϵ)2κ(A)2 ≪ 1 (LU− GMRES− IR5)

25/47

Error analysis with numerical approximations

Two main changes on the accuracies compared with classic LU with
partial pivoting:

ä Need to handle numerical approximations ⇒ We consider a
generic model of numerical approximations introducing a
perturbation ϵ. It includes BLR and static pivoting.

ä We must take into account the growth factor ρn (≈ difference
of scale between the entries of A and its factors L and U) which
might not be negligible without stable pivoting strategy.

Theorem (Convergence conditions)
Let Ax = b be solved by LU-IR3 or GMRES-IR5 using an approximate LU
factorization. Then the forward error will converge provided that

(ufρn + ϵ)κ(A) ≪ 1 (LU− IR3)
(ug + upρnκ(A))(ufρn + ϵ)2κ(A)2 ≪ 1 (LU− GMRES− IR5)

25/47

Implemented parallel methods

Solver uf u ur ug up
max(κ(A))
(ϵ = 0)

forward error

DMUMPS fp64 LU direct solver — κ(A)× 10−16

LU-IR S D D — — 2× 107 κ(A)× 10−16

LU-GMRES-IR S D D D D 1× 1010 κ(A)× 10−16

ä LU-IR and LU-GMRES-IR use single precision (fp32) factorization, BLR,
and static pivoting to save resources.

ä We use a multifrontal sparse solver. While we expect our conclusions
on the execution time to hold for all direct sparse solvers. Our conclusions
on the memory consumption related to the active memory are specific to
the multifrontal solvers.

26/47

Implementation details and design choices

ä We use the MUMPS multifrontal sparse solvers for factorization and
solve. MUMPS supports BLR, static pivoting, and threshold partial pivoting.

ä The default pivoting strategy is not partial pivoting, but is threshold
partial pivoting.

ä For LU-GMRES-IR: we cast in-place the factors fully from fp32 to fp64.
The active memory is not cast and is overwritten by the factors in fp64!

ä In-house GMRES implementation and SpMV kernel running in parallel
on the master MPI process.

ä The MUMPS factorization and solve are distributed over the MPI
processes.

27/47

Implementation details and design choices

ä We use the MUMPS multifrontal sparse solvers for factorization and
solve. MUMPS supports BLR, static pivoting, and threshold partial pivoting.

ä The default pivoting strategy is not partial pivoting, but is threshold
partial pivoting.

ä For LU-GMRES-IR: we cast in-place the factors fully from fp32 to fp64.
The active memory is not cast and is overwritten by the factors in fp64!

ä In-house GMRES implementation and SpMV kernel running in parallel
on the master MPI process.

ä The MUMPS factorization and solve are distributed over the MPI
processes.

27/47

Implementation details and design choices

ä We use the MUMPS multifrontal sparse solvers for factorization and
solve. MUMPS supports BLR, static pivoting, and threshold partial pivoting.

ä The default pivoting strategy is not partial pivoting, but is threshold
partial pivoting.

ä For LU-GMRES-IR: we cast in-place the factors fully from fp32 to fp64.
The active memory is not cast and is overwritten by the factors in fp64!

ä In-house GMRES implementation and SpMV kernel running in parallel
on the master MPI process.

ä The MUMPS factorization and solve are distributed over the MPI
processes.

27/47

Implementation details and design choices

ä We use the MUMPS multifrontal sparse solvers for factorization and
solve. MUMPS supports BLR, static pivoting, and threshold partial pivoting.

ä The default pivoting strategy is not partial pivoting, but is threshold
partial pivoting.

ä For LU-GMRES-IR: we cast in-place the factors fully from fp32 to fp64.
The active memory is not cast and is overwritten by the factors in fp64!

ä In-house GMRES implementation and SpMV kernel running in parallel
on the master MPI process.

ä The MUMPS factorization and solve are distributed over the MPI
processes.

27/47

Implementation details and design choices

ä We use the MUMPS multifrontal sparse solvers for factorization and
solve. MUMPS supports BLR, static pivoting, and threshold partial pivoting.

ä The default pivoting strategy is not partial pivoting, but is threshold
partial pivoting.

ä For LU-GMRES-IR: we cast in-place the factors fully from fp32 to fp64.
The active memory is not cast and is overwritten by the factors in fp64!

ä In-house GMRES implementation and SpMV kernel running in parallel
on the master MPI process.

ä The MUMPS factorization and solve are distributed over the MPI
processes.

27/47

Matrix set

Name N NNZ Arith. Sym. κ(A) Fact.
(flops)

Slv.
(flops)

ElectroPhys10M 1.02E+07 1.41E+08 R 1 1.10E+01 4E+14 9E+10
DrivAer6M 6.11E+06 4.97E+07 R 1 9.40E+05 6E+13 3E+10

Queen_4147 4.14E+06 3.28E+08 R 1 4.30E+06 3E+14 6E+10
tminlet3M 2.84E+06 1.62E+08 C 0 2.70E+07 1E+14 2E+10
perf009ar 5.41E+06 2.08E+08 R 1 3.70E+08 2E+13 2E+10

elasticity-3d 5.18E+06 1.16E+08 R 1 3.60E+09 2E+14 5E+10
lfm_aug5M 5.52E+06 3.71E+07 C 1 5.80E+11 2E+14 5E+10

CarBody25M 2.44E+07 7.06E+08 R 1 8.60E+12 1E+13 3E+10
thmgas 5.53E+06 3.71E+07 R 0 8.28E+13 1E+14 4E+10

Set of industrial and SuiteSparse matrices.

ä The matrices are ordered in increasing κ(A), the higher κ(A) is, the
slower the convergence (if reached at all).

28/47

Matrix set

Name N NNZ Arith. Sym. κ(A) Fact.
(flops)

Slv.
(flops)

ElectroPhys10M 1.02E+07 1.41E+08 R 1 1.10E+01 4E+14 9E+10
DrivAer6M 6.11E+06 4.97E+07 R 1 9.40E+05 6E+13 3E+10

Queen_4147 4.14E+06 3.28E+08 R 1 4.30E+06 3E+14 6E+10
tminlet3M 2.84E+06 1.62E+08 C 0 2.70E+07 1E+14 2E+10
perf009ar 5.41E+06 2.08E+08 R 1 3.70E+08 2E+13 2E+10

elasticity-3d 5.18E+06 1.16E+08 R 1 3.60E+09 2E+14 5E+10
lfm_aug5M 5.52E+06 3.71E+07 C 1 5.80E+11 2E+14 5E+10

CarBody25M 2.44E+07 7.06E+08 R 1 8.60E+12 1E+13 3E+10
thmgas 5.53E+06 3.71E+07 R 0 8.28E+13 1E+14 4E+10

Set of industrial and SuiteSparse matrices.

ä We run on OLYMPE supercomputer nodes (two Intel 18-cores
Skylake/node), 1 node (2MPI×18threads) or 2 nodes (4MPI×18threads)
depending on the matrix size.

28/47

Time and memory performance w.r.t. DMUMPS

Time
El
ec
tro

Ph
ys
10
M

Dr
iv
Ae

r6
M

Qu
ee

n_
41
47

tm
in
le
t3
M

pe
rf0

09
ar

el
as
tic

ity
-3
d

lfm
_a

ug
5M

Ca
rB
od

y2
5M

th
m
ga

s
0%

25%

50%

75%

100%

1.7

1.4

1.7
2.2

no
co

nv
er
ge

nc
e

2.1

no
co

nv
er
ge

nc
e

1.51.6

1.2

1.5
1.9

0.9

1.3

2

1.2

Memory

El
ec
tro

Ph
ys
10
M

Dr
iv
Ae

r6
M

Qu
ee

n_
41
47

tm
in
le
t3
M

pe
rf0

09
ar

el
as
tic

ity
-3
d

lfm
_a

ug
5M

Ca
rB
od

y2
5M

th
m
ga

s

0%

25%

50%

75%

100%

2 2 2 2 1.9

no
co

nv
er
ge

nc
e

2

no
co

nv
er
ge

nc
e

2
1.6 1.5 1.6

1.4 1.5 1.5
1.7

1.4 1.4

LU-IR LU-GMRES-IR

29/47

Time and memory performance w.r.t. DMUMPS

Time
El
ec
tro

Ph
ys
10
M

Dr
iv
Ae

r6
M

Qu
ee

n_
41
47

tm
in
le
t3
M

pe
rf0

09
ar

el
as
tic

ity
-3
d

lfm
_a

ug
5M

Ca
rB
od

y2
5M

th
m
ga

s
0%

25%

50%

75%

100%

1.7

1.4

1.7
2.2

no
co

nv
er
ge

nc
e

2.1

no
co

nv
er
ge

nc
e

1.51.6

1.2

1.5
1.9

0.9

1.3

2

1.2

Memory

El
ec
tro

Ph
ys
10
M

Dr
iv
Ae

r6
M

Qu
ee

n_
41
47

tm
in
le
t3
M

pe
rf0

09
ar

el
as
tic

ity
-3
d

lfm
_a

ug
5M

Ca
rB
od

y2
5M

th
m
ga

s

0%

25%

50%

75%

100%

2 2 2 2 1.9

no
co

nv
er
ge

nc
e

2

no
co

nv
er
ge

nc
e

2
1.6 1.5 1.6

1.4 1.5 1.5
1.7

1.4 1.4

LU-IR LU-GMRES-IR

ä LU-IR up to 2.2× faster.
ä LU-GMRES-IR up to 1.9× faster.

Slower than LU-IR, but more
robust.

ä LU-IR consumes 2× less memory.
ä LU-GMRES-IR consumes at best

1.7× less despite factors in
double ⇒ save active memory.

29/47

Time and memory performance with BLR w.r.t. DMUMPS

tminlet3M

0.0 10−10 10−8 10−6 10−4 10−2 0.0 10−10 10−8 10−6 10−4 10−2
0%

25%

50%

75%

100%

Time Memory

2.2
1.9 2

3.3

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

2 2 2.1
2.9

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

2.2
1.9 2

1.4

1.9 2

3.3

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

1.7 1.8

3 2.8
no

co
nv

er
ge

nc
e

2

1.4

ϵBLR

LU-IR LU-GMRES-IR

30/47

Time and memory performance with BLR w.r.t. DMUMPS

tminlet3M

0.0 10−10 10−8 10−6 10−4 10−2 0.0 10−10 10−8 10−6 10−4 10−2
0%

25%

50%

75%

100%

Time Memory

2.2
1.9 2

3.3

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

2 2 2.1
2.9

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

2.2
1.9 1.9 1.7 2

1.4

2

1.4

ϵBLR

LU-IR LU-GMRES-IR BLR-LU-IR BLR-LU-GMRES-IR

30/47

Time and memory performance with BLR w.r.t. DMUMPS

tminlet3M

0.0 10−10 10−8 10−6 10−4 10−2 0.0 10−10 10−8 10−6 10−4 10−2
0%

25%

50%

75%

100%

Time Memory

2.2
1.9 2

3.3

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

2 2 2.1
2.9

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

2.2
1.9 1.9 2

1.7 1.8
2

1.4

2 2.1

1.4 1.5

ϵBLR

LU-IR LU-GMRES-IR BLR-LU-IR BLR-LU-GMRES-IR

30/47

Time and memory performance with BLR w.r.t. DMUMPS

tminlet3M

0.0 10−10 10−8 10−6 10−4 10−2 0.0 10−10 10−8 10−6 10−4 10−2
0%

25%

50%

75%

100%

Time Memory

2.2
1.9 2

3.3

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

2 2 2.1
2.9

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

2.2
1.9 1.9 2

3.3

1.7 1.8

3

2

1.4

2 2.1
2.9

1.4 1.5

2.6

ϵBLR

LU-IR LU-GMRES-IR BLR-LU-IR BLR-LU-GMRES-IR

30/47

Time and memory performance with BLR w.r.t. DMUMPS

tminlet3M

0.0 10−10 10−8 10−6 10−4 10−2 0.0 10−10 10−8 10−6 10−4 10−2
0%

25%

50%

75%

100%

Time Memory

2.2
1.9 2

3.3

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

2 2 2.1
2.9

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

2.2
1.9 1.9 2

3.3

no
co

nv
er
ge

nc
e

1.7 1.8

3 2.8
2

1.4

2 2.1
2.9

no
co

nv
er
ge

nc
e

1.4 1.5

2.6
3.4

ϵBLR

LU-IR LU-GMRES-IR BLR-LU-IR BLR-LU-GMRES-IR

30/47

Time and memory performance with BLR w.r.t. DMUMPS

tminlet3M

0.0 10−10 10−8 10−6 10−4 10−2 0.0 10−10 10−8 10−6 10−4 10−2
0%

25%

50%

75%

100%

Time Memory

2.2
1.9 2

3.3

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

2 2 2.1
2.9

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

2.2
1.9 1.9 2

3.3

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

1.7 1.8

3 2.8
no

co
nv

er
ge

nc
e

2

1.4

2 2.1
2.9

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

1.4 1.5

2.6
3.4

no
co

nv
er
ge

nc
e

ϵBLR

LU-IR LU-GMRES-IR BLR-LU-IR BLR-LU-GMRES-IR

30/47

Time performance with BLR + static pivoting w.r.t. DMUMPS

tminlet3M

0.0 10−10 10−8 10−6 10−4 10−2
0%

25%

50%

75%

100% Time

2.2
1.9 2

3.3

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

2.2
1.9 1.9 2

3.3

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

1.7 1.8

3 2.8

no
co

nv
er
ge

nc
e

ϵBLR

BLR-LU-IR BLR-LU-GMRES-IR

31/47

Time performance with BLR + static pivoting w.r.t. DMUMPS

tminlet3M (ϵSTC = 10−8)

0.0 10−10 10−8 10−6 10−4 10−2
0%

25%

50%

75%

100% Time

2.2
1.9 2

3.3

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e2.4

2.1 2.1 2.2

4.2

no
co

nv
er
ge

nc
e

no
co

nv
er
ge

nc
e

1.9 2

3.7 3.2

no
co

nv
er
ge

nc
e

ϵBLR

BLR-LU-IR BLR-LU-GMRES-IR BLR-STC-LU-IR BLR-STC-LU-GMRES-IR

31/47

Gather it all: Best time and memory w.r.t. DMUMPS

Time
El
ec
tro

Ph
ys
10
M

Dr
iv
Ae

r6
M

Qu
ee

n_
41
47

tm
in
le
t3
M

pe
rf0

09
ar

el
as
tic

ity
-3
d

lfm
_a

ug
5M

Ca
rB
od

y2
5M

th
m
ga

s
0%

25%

50%

75%

100%

5.2

2.4

4.7 4.2

1.5

2.8

5.6

1.0

1.9

Memory

El
ec
tro

Ph
ys
10
M

Dr
iv
Ae

r6
M

Qu
ee

n_
41
47

tm
in
le
t3
M

pe
rf0

09
ar

el
as
tic

ity
-3
d

lfm
_a

ug
5M

Ca
rB
od

y2
5M

th
m
ga

s

0%

25%

50%

75%

100%

3.8 3.6 3.5 3.4 3.0
3.9 3.4

1.9

4.4

⇒ Up to 5.6× faster and 4.4× less memory with the same accuracy
on the solution than DMUMPS!

32/47

Conclusion on sparse iterative refinement

Contributions
ä Error analysis: New convergence conditions for LU-IR3 and LU-GMRES-
IR5 taking into account numerical approximations used in LU direct
solvers.
ä Performance analysis: Demonstrate heavy resource savings while pre-
serving the accuracy on sparse problems from a wide range of industrial
and real-life applications.

Amestoy, Buttari, Higham, L’Excellent, Mary, Vieublé. “ Combining sparse approximate
factorizations with mixed precision iterative refinement”. In: Accepted in ACM TOMS,
preprint available on HAL (ID: hal-03536031).

Next: Until now, we showed that state-of-the-art iterative refinements
could greatly improve sparse direct solvers. Can we improve sparse iterative
solvers in the same way, in particular Krylov subspace based solvers?

33/47

Arbitrary preconditioned GMRES
in mixed precision

Three criteria: Inner/Outer solvers

Algorithm: Refinement loop
1:
2: repeat
3: xi+1 = GMRES(A, b, xi, τ)
4: until convergence

1st criterion: Outer solver in high precision
and inner solver in low precision (u ≪ ui).

ä [Turner & Walker, 92]: outer iterative
refinement (in precision u) with inner
GMRES (in precision ui).

ä [Buttari et al., 08]: outer FGMRES (in
precision u) with inner GMRES as a
preconditioner (in precision ui).

Algorithm: GMRES(A,b, x0, τ)
Require: A ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1:
2: r0 = b− Ax0 u
3: β = ∥r0∥, v1 = r0/β, k = 1 ui
4: repeat
5: wk = Avk ui
6:
7: for i = 1, . . . , k do
8: hi,k = vTi wk ui
9: wk = wk − hi,kvi ui
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k ui
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥ ui
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk u
34/47

Three criteria: Inner/Outer solvers

Algorithm: Refinement loop
1:
2: repeat
3: xi+1 = GMRES(A, b, xi, τ)
4: until convergence

1st criterion: Outer solver in high precision
and inner solver in low precision (u ≪ ui).

ä [Turner & Walker, 92]: outer iterative
refinement (in precision u) with inner
GMRES (in precision ui).

ä [Buttari et al., 08]: outer FGMRES (in
precision u) with inner GMRES as a
preconditioner (in precision ui).

Algorithm: FGMRES(A,b, x0, τ)
Require: A ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1:
2: r0 = b− Ax0 u
3: β = ∥r0∥, v1 = r0/β, k = 1 u
4: repeat
5: zk = GMRES(Azk = vk) ui
6: wk = Azk u
7: for i = 1, . . . , k do
8: hi,k = vTi wk u
9: wk = wk − hi,kvi u
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k u
12: Vk = [v1, . . . , vk], Zk = [z1, . . . , zk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥ u
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Zkyk u
34/47

Three criteria: Other precision in the preconditioner

Algorithm: Refinement loop
1: Compute A = L̂Û um
2: repeat
3: xi+1 = FGMRES(A, L̂Û, b, xi, τ)
4: until convergence

2nd criterion: Application of the
preconditioner in low or high precisions.

ä [Arioli & Duff, 08]: restarted FGMRES
(in precision u) preconditioned by the LU
factors (computed and applied in
precision um), where u ≪ um .

ä LU-GMRES-IR5: GMRES (in precision
ug) with restart (in precision u and ur)
left-preconditioned by the LU factors
(computed in precision uf and applied
with A in precision up), where ur ≤ u and
up ≤ ug ≤ uf .

Algorithm: FGMRES(A, L̂Û,b, x0, τ)
Require: A, L̂Û ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1:
2: r0 = b− Ax0 u
3: β = ∥r0∥, v1 = r0/β, k = 1 u
4: repeat
5: zk = Û \ L̂ \ vk um
6: wk = Azk u
7: for i = 1, . . . , k do
8: hi,k = vTi wk u
9: wk = wk − hi,kvi u
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k u
12: Vk = [v1, . . . , vk], Zk = [z1, . . . , zk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥ u
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Zkyk u
35/47

Three criteria: Other precision in the preconditioner

Algorithm: Refinement loop
1: Compute A = L̂Û uf
2: repeat
3: xi+1 = LGMRES(A, L̂Û, b, xi, τ)
4: until convergence

2nd criterion: Application of the
preconditioner in low or high precisions.

ä [Arioli & Duff, 08]: restarted FGMRES
(in precision u) preconditioned by the LU
factors (computed and applied in
precision um), where u ≪ um .

ä LU-GMRES-IR5: GMRES (in precision
ug) with restart (in precision u and ur)
left-preconditioned by the LU factors
(computed in precision uf and applied
with A in precision up), where ur ≤ u and
up ≤ ug ≤ uf .

Algorithm: LGMRES(A, L̂Û,b, x0, τ)
Require: A, L̂Û ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1: r0 = b− Ax ur
2: s0 = Û \ L̂ \ r0 up
3: β = ∥s0∥, v1 = s0/β, k = 1 ug
4: repeat
5: zk = Avk up
6: wk = Û \ L̂ \zk up
7: for i = 1, . . . , k do
8: hi,k = vTi wk ug
9: wk = wk − hi,kvi ug
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k ug
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥ ug
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk u
35/47

Three criteria: Adaptive precision

Algorithm: Refinement loop
1:
2: repeat
3: xi+1 = GMRES(A, b, xi, τ)
4: until convergence

3rd criterion: Adapt the precisions as the
iterations go.

ä [Gratton et al., 20]: inexact Krylov
GMRES with decreasing precisions uka on
the matrix–vector products and uki on
the inner products, where uka ≤ uk+1

a
and uki ≤ uk+1

i .

ä [Oktay & Carson, 21]: ur ≤ u and uf
are fixed. Increasing precisions inside
GMRES if the convergence stagnates,
where ukg ≥ uk+1

g and ukp ≥ uk+1
p .

Algorithm: GMRES(A,b, x0, τ)
Require: A ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1:
2: r0 = b− Ax0 u
3: β = ∥r0∥, v1 = r0/β, k = 1 u
4: repeat
5: wk = Avk uka
6:
7: for i = 1, . . . , k do
8: hi,k = vTi wk uki
9: wk = wk − hi,kvi u
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k u
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥ u
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk u
36/47

Three criteria: Adaptive precision

Algorithm: Refinement loop
1: Compute A = L̂Û uf
2: repeat
3: xi+1 = LGMRES(A, L̂Û, b, xi, τ)
4: until convergence

3rd criterion: Adapt the precision as the
iterations go.

ä [Gratton et al., 20]: inexact Krylov
GMRES with decreasing precisions uka on
the matrix–vector products and uki on
the inner products, where uka ≤ uk+1

a and
uki ≤ uk+1

i .

ä [Oktay & Carson, 21]: ur ≤ u and uf
are fixed. Increasing precisions inside
GMRES if the convergence stagnates,
where ukg ≥ uk+1

g and ukp ≥ uk+1
p .

Algorithm: LGMRES(A, L̂Û,b, x0, τ)
Require: A, L̂Û ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1: r0 = b− Ax ur
2: s0 = Û \ L̂ \ r0 ukp
3: β = ∥s0∥, v1 = s0/β, k = 1 ukg
4: repeat
5: zk = Avk ukp
6: wk = Û \ L̂ \zk ukp
7: for i = 1, . . . , k do
8: hi,k = vTi wk ukg
9: wk = wk − hi,kvi ukg
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k ukg
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥ ukg
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk u
36/47

State of the art: Other works

Just the tip of the iceberg...
ä Emmanuel Agullo, Franck Cappello, Sheng Di, Luc Giraud, Xin Liang, and Nick Schenkels,

“Exploring variable accuracy storage through lossy compression techniques in numerical
linear algebra: a first application to flexible GMRES”, 2020.

ä Hartwig Anzt, Vincent Heuveline, and Björn Rocker, “An Error Correction Solver for Linear
Systems: Evaluation of Mixed Precision Implementations”, 2011.

ä Mario Arioli, Iain S. Duff, Serge Gratton, and Stéphane Pralet, “A Note on GMRES
Preconditioned by a Perturbed LDLT Decomposition with Static Pivoting”, 2007.

ä Erin Carson and Nicholas J. Higham, “A new analysis of iterative refinement and its
application to accurate solution of ill-conditioned sparse linear systems”, 2017.

ä Erin Carson and Noaman Khan, “Mixed Precision Iterative Refinement with Sparse
Approximate Inverse Preconditioning”, 2022.

ä Neil Lindquist, Piotr Luszczek, and Jack Dongarra, “Improving the performance of the GMRES
method using mixed-precision techniques”, 2020.

ä Jennifer A. Loe, Christian A. Glusa, Ichitaro Yamazaki, Erik G. Boman, and Sivasankaran
Rajamanickam, “A Study of Mixed Precision Strategies for GMRES on GPUs”, 2021.

ä José Aliaga, Hartwig Anzt, Thomas Grützmacher, Enrique Quintana-Ortí, and Andrés Tomás,
“Compressed basis GMRES on high performance GPUs”, 2020.

ä · · ·

BUT most of these works have a lot of overlap with one of the previous
configurations. 37/47

Current limitations we want to tackle

Limitations
ä Several error analyses in these works are specialized for one type of precondi-

tioner (LU, ILU, Block Jacobi, etc): theoretical results are not meant to be extended
to other preconditioners.

ä Too many different mixed precision strategies: how to choose one? which one is
the best? are they linked? are they coherent between each other?

ä Lack of general advice/discussions helping the user to choose a certain strategy
according to its use case.

Questions (and objectives)
ä One GMRES to rule them all⇒ Can we gather all these propositions under a same

coherent mixed precision GMRES?

ä Can we provide an efficient way for a user to set his/her precisions according to
his/her application?

ä Can we provide other mixed precision opportunities for GMRES?

38/47

Our proposition: M-GMRES-IR6

Algorithm: Refinement loop
1: (Optional) Compute M−1 uf
2: repeat
3: xi+1 = GMRES(A,M−1, b, xi, τ)
4: until convergence

ä Generalization of LU-GMRES-IR5.

ä Arbitrary preconditioner M−1 .

ä Dissociating the precision up in two
precisions um ̸= ua .

ä Up to 6 independent precisions: uf , u,
ur , ug , um , and ua !

ä Covers many other works on mixed
precision GMRES...

ä ... and offers new opportunities.

Algorithm: GMRES(A,M−1,b, x0, τ)
Require: A,M−1 ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1: r0 = b− Ax ur
2: s0 = M−1r0 um
3: β = ∥s0∥, v1 = s0/β, k = 1 ug
4: repeat
5: zk = Avk ua
6: wk = M−1zk um
7: for i = 1, . . . , k do
8: hi,k = vTi wk ug
9: wk = wk − hi,kvi ug
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k ug
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥ ug
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk u
39/47

Our proposition: M-GMRES-IR6

Algorithm: Refinement loop
1: (Optional) Compute M−1 uf
2: repeat
3: xi+1 = GMRES(A,M−1, b, xi, τ)
4: until convergence

ä Generalization of LU-GMRES-IR5.

ä Arbitrary preconditioner M−1 .

ä Dissociating the precision up in two
precisions um ̸= ua .

ä Up to 6 independent precisions: uf , u,
ur , ug , um , and ua !

ä Covers many other works on mixed
precision GMRES...

ä ... and offers new opportunities.

Algorithm: GMRES(A,M−1,b, x0, τ)
Require: A,M−1 ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1: r0 = b− Ax ur
2: s0 = M−1r0 um
3: β = ∥s0∥, v1 = s0/β, k = 1 ug
4: repeat
5: zk = Avk ua
6: wk = M−1zk um
7: for i = 1, . . . , k do
8: hi,k = vTi wk ug
9: wk = wk − hi,kvi ug
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k ug
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥ ug
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk u
39/47

Our proposition: M-GMRES-IR6

Algorithm: Refinement loop
1: (Optional) Compute M−1 uf
2: repeat
3: xi+1 = GMRES(A,M−1, b, xi, τ)
4: until convergence

ä Generalization of LU-GMRES-IR5.

ä Arbitrary preconditioner M−1 .

ä Dissociating the precision up in two
precisions um ̸= ua .

ä Up to 6 independent precisions: uf , u,
ur , ug , um , and ua !

ä Covers many other works on mixed
precision GMRES...

ä ... and offers new opportunities.

Algorithm: GMRES(A,M−1,b, x0, τ)
Require: A,M−1 ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1: r0 = b− Ax ur
2: s0 = M−1r0 um
3: β = ∥s0∥, v1 = s0/β, k = 1 ug
4: repeat
5: zk = Avk ua
6: wk = M−1zk um
7: for i = 1, . . . , k do
8: hi,k = vTi wk ug
9: wk = wk − hi,kvi ug
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k ug
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥ ug
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk u
39/47

Our proposition: M-GMRES-IR6

Algorithm: Refinement loop
1: (Optional) Compute M−1 uf
2: repeat
3: xi+1 = GMRES(A,M−1, b, xi, τ)
4: until convergence

ä Generalization of LU-GMRES-IR5.

ä Arbitrary preconditioner M−1 .

ä Dissociating the precision up in two
precisions um ̸= ua .

ä Up to 6 independent precisions: uf , u,
ur , ug , um , and ua !

ä Covers many other works on mixed
precision GMRES...

ä ... and offers new opportunities.

Algorithm: GMRES(A,M−1,b, x0, τ)
Require: A,M−1 ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1: r0 = b− Ax ur
2: s0 = M−1r0 um
3: β = ∥s0∥, v1 = s0/β, k = 1 ug
4: repeat
5: zk = Avk ua
6: wk = M−1zk um
7: for i = 1, . . . , k do
8: hi,k = vTi wk ug
9: wk = wk − hi,kvi ug
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k ug
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥ ug
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk u
39/47

Our proposition: M-GMRES-IR6

Algorithm: Refinement loop
1: (Optional) Compute M−1 uf
2: repeat
3: xi+1 = GMRES(A,M−1, b, xi, τ)
4: until convergence

ä Generalization of LU-GMRES-IR5.

ä Arbitrary preconditioner M−1 .

ä Dissociating the precision up in two
precisions um ̸= ua .

ä Up to 6 independent precisions: uf , u,
ur , ug , um , and ua !

ä Covers many other works on mixed
precision GMRES...

ä ... and offers new opportunities.

Algorithm: GMRES(A,M−1,b, x0, τ)
Require: A,M−1 ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1: r0 = b− Ax ur
2: s0 = M−1r0 um
3: β = ∥s0∥, v1 = s0/β, k = 1 ug
4: repeat
5: zk = Avk ua
6: wk = M−1zk um
7: for i = 1, . . . , k do
8: hi,k = vTi wk ug
9: wk = wk − hi,kvi ug
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k ug
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥ ug
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk u
39/47

Our proposition: M-GMRES-IR6

Algorithm: Refinement loop
1: (Optional) Compute M−1 uf
2: repeat
3: xi+1 = GMRES(A,M−1, b, xi, τ)
4: until convergence

ä Generalization of LU-GMRES-IR5.

ä Arbitrary preconditioner M−1 .

ä Dissociating the precision up in two
precisions um ̸= ua .

ä Up to 6 independent precisions: uf , u,
ur , ug , um , and ua !

ä Covers many other works on mixed
precision GMRES...

ä ... and offers new opportunities.

Algorithm: GMRES(A,M−1,b, x0, τ)
Require: A,M−1 ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1: r0 = b− Ax ur
2: s0 = M−1r0 um
3: β = ∥s0∥, v1 = s0/β, k = 1 ug
4: repeat
5: zk = Avk ua
6: wk = M−1zk um
7: for i = 1, . . . , k do
8: hi,k = vTi wk ug
9: wk = wk − hi,kvi ug
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k ug
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥ ug
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk u
39/47

Our proposition: M-GMRES-IR6

Algorithm: Refinement loop
1: (Optional) Compute M−1 uf
2: repeat
3: xi+1 = GMRES(A,M−1, b, xi, τ)
4: until convergence

ä Generalization of LU-GMRES-IR5.

ä Arbitrary preconditioner M−1 .

ä Dissociating the precision up in two
precisions um ̸= ua .

ä Up to 6 independent precisions: uf , u,
ur , ug , um , and ua !

ä Covers many other works on mixed
precision GMRES...

ä ... and offers new opportunities.

Algorithm: GMRES(A,M−1,b, x0, τ)
Require: A,M−1 ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1: r0 = b− Ax ur
2: s0 = M−1r0 um
3: β = ∥s0∥, v1 = s0/β, k = 1 ug
4: repeat
5: zk = Avk ua
6: wk = M−1zk um
7: for i = 1, . . . , k do
8: hi,k = vTi wk ug
9: wk = wk − hi,kvi ug
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k ug
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥ ug
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk u
39/47

Stability of restarted left-preconditioned GMRES

Theorem (Stability of M-GMRES-IR6)
Let Ax = b be solved by the mixed precision left-preconditioned restarted
MGS-GMRES. Provided that A and M are not singular, the forward error

∥x̂− x∥
∥x∥

≤ nur cond(A, x) + u, (1)

and we guarantee that the backward error

∥Ax̂− b∥
∥A∥∥x∥+ ∥b∥

≤ nur + u, (2)

⇒ Ability to set ua ̸= um relies on “ρA ≪ or ≫ ρM”.

40/47

Stability of restarted left-preconditioned GMRES

Theorem (Stability of M-GMRES-IR6)
Let Ax = b be solved by the mixed precision left-preconditioned restarted
MGS-GMRES. Provided that A and M are not singular, the forward error

∥x̂− x∥
∥x∥

≤ nur cond(A, x) + u, if max
(
ug, uaρA, umρM, τ

)
κ(Ã) ≪ 1, (1)

and we guarantee that the backward error

∥Ax̂− b∥
∥A∥∥x∥+ ∥b∥

≤ nur + u, if max
(
ug, uaρA, umρM, τ

)
κ(M) ≪ 1. (2)

Where

uaρA ≡ ∥M−1∆Avk∥
∥M−1Avk∥

≤ uaρ̄A, umρM ≡ ∥∆MAvk∥
∥M−1Avk∥

≤ umρ̄M.

⇒ Ability to set ua ̸= um relies on “ρA ≪ or ≫ ρM”.

40/47

Stability of restarted left-preconditioned GMRES

Theorem (Stability of M-GMRES-IR6)
Let Ax = b be solved by the mixed precision left-preconditioned restarted
MGS-GMRES. Provided that A and M are not singular, the forward error

∥x̂− x∥
∥x∥

≤ nur cond(A, x) + u, if max
(
ug, uaρA, umρM, τ

)
κ(Ã) ≪ 1, (1)

and we guarantee that the backward error

∥Ax̂− b∥
∥A∥∥x∥+ ∥b∥

≤ nur + u, if max
(
ug, uaρA, umρM, τ

)
κ(M) ≪ 1. (2)

Where

uaρA ≡ ∥M−1∆Avk∥
∥M−1Avk∥

≤ uaρ̄A, umρM ≡ ∥∆MAvk∥
∥M−1Avk∥

≤ umρ̄M.

⇒ Ability to set ua ̸= um relies on “ρA ≪ or ≫ ρM”.

40/47

Dissociate the left preconditioned product

0 2 4 6 8 10 12 14

10
1

10
5

10
9

#it

Er
ro
rs

κ(A) = 1e10 − κ(M) = 1e02

ρA,k
ρM,k

Evolution of ρA,k and ρM,k over 15 iterations of GMRES. (Randomly generated
A,M ∈ R50×50 with targeted condition numbers)

41/47

Dissociate the left preconditioned product

0 2 4 6 8 10 12 14

10
1

10
5

10
9

#it

Er
ro
rs

κ(A) = 1e10 − κ(M) = 1e04

ρA,k
ρM,k

Evolution of ρA,k and ρM,k over 15 iterations of GMRES. (Randomly generated
A,M ∈ R50×50 with targeted condition numbers)

41/47

Dissociate the left preconditioned product

0 2 4 6 8 10 12 14

10
1

10
5

10
9

#it

Er
ro
rs

κ(A) = 1e10 − κ(M) = 1e06

ρA,k
ρM,k

Evolution of ρA,k and ρM,k over 15 iterations of GMRES. (Randomly generated
A,M ∈ R50×50 with targeted condition numbers)

41/47

Dissociate the left preconditioned product

0 2 4 6 8 10 12 14

10
1

10
5

10
9

#it

Er
ro
rs

κ(A) = 1e10 − κ(M) = 1e08

ρA,k
ρM,k

Evolution of ρA,k and ρM,k over 15 iterations of GMRES. (Randomly generated
A,M ∈ R50×50 with targeted condition numbers)

41/47

Dissociate the left preconditioned product

0 2 4 6 8 10 12 14

10
1

10
5

10
9

#it

Er
ro
rs

κ(A) = 1e10 − κ(M) = 1e10

ρA,k
ρM,k

Evolution of ρA,k and ρM,k over 15 iterations of GMRES. (Randomly generated
A,M ∈ R50×50 with targeted condition numbers)

41/47

Dissociate the left preconditioned product

0 2 4 6 8 10 12 14

10
1

10
5

10
9

#it

Er
ro
rs

κ(A) = 1e10 − κ(M) = 1e10

ρA,k
ρM,k

Evolution of ρA,k and ρM,k over 15 iterations of GMRES. (Randomly generated
A,M ∈ R50×50 with targeted condition numbers)

⇒ We can set um ≫ ua!
41/47

Experimental results on real problems with M-GMRES-IR6

ug = inner GMRES, um = application of M−1, ua = application of A

We will focus on the variant: ug ≥ um ≫ ua

ä It is meaningful and has not been studied before.
ä Interesting for performance in configurations where the application of the

preconditioner M−1 is more costly than the application of A (e.g. ILU).
ä Will be compared to already known variants ug = um = ua and ug ≫ um = ua .

Experimental setting:

ä Convergence behavior on small Suite Sparse matrices.
ä Preconditioner = threshold ILU.
ä fp128 = Q, fp64 = D, fp32 = S, and fp16 = H.
ä u = D and ur = Q fixed ⇒ ∥x̂− x∥/∥x∥ = 10−16 .
ä ug = H or S fixed.

42/47

Experimental results on real problems with M-GMRES-IR6

0 20 40 60 80 100 120

1e
0

1e
-8

1e
-1
6

#it

Er
ro
r

1138_bus - ILUT(1e-6) - ug= S

um= ua= D
um = ua= S

Evolution of the error ∥x̂− x∥/∥x∥ according to the number of iterations with
u = D and ur = Q.

43/47

Experimental results on real problems with M-GMRES-IR6

0 20 40 60 80 100 120

1e
0

1e
-8

1e
-1
6

#it

Er
ro
r

1138_bus - ILUT(1e-6) - ug= S

um= S ≫ ua= D
um= ua= D
um = ua= S

Evolution of the error ∥x̂− x∥/∥x∥ according to the number of iterations with
u = D and ur = Q.

43/47

Experimental results on real problems with M-GMRES-IR6

0 5 10 15 20 25 30 35 40 45

1e
0

1e
-8

1e
-1
6

#it

Er
ro
r

bcsstk19 - ILUT(0.0) - ug= S

um= S ≫ ua= D
um= ua= D
um = ua= S

Evolution of the error ∥x̂− x∥/∥x∥ according to the number of iterations with
u = D and ur = Q.

43/47

Experimental results on real problems with M-GMRES-IR6

4 8 12 16

1e
0

1e
-8

1e
-1
6

#it

Er
ro
r

Vehicle_10NN - ILUT(0.0) - ug= H

um= S ≫ ua= D
um= ua= D
um = ua= S

Evolution of the error ∥x̂− x∥/∥x∥ according to the number of iterations with
u = D and ur = Q.

43/47

Experimental results on real problems with M-GMRES-IR6

0 10 20 30 40 50 60 70 80

1e
0

1e
-8

1e
-1
6

#it

Er
ro
r

pores_3 - ILUT(1e-6) - ug= H

um= S ≫ ua= D
um= ua= D
um = ua= S

Evolution of the error ∥x̂− x∥/∥x∥ according to the number of iterations with
u = D and ur = Q.

43/47

Conclusion on M-GMRES-IR6

Contributions

ä New algorithm: M-GMRES-IR6 which is a newmixed precision framework
for GMRES and covers most of the previous works on mixed precision
GMRES.

ä Error analysis: Provides new convergence conditions for M-GMRES-IR6
and assesses the relevance of a new mixed precision strategy.

ä Numerical experiments: Validate the practical relevance of a new mixed
precision strategy on real-life matrices.

Early work: Few things still need to be explored and completed (e.g. right
preconditioned case + FGMRES, the use of other preconditioners in the
experiments, evaluate the sharpness of the bounds ρ̄A and ρ̄M).

Article in preparation.

44/47

Conclusion

Summary of the contributions presented in this talk

LU-GMRES-IR5: relaxing the precisions (Chap 5)
Extension of LU-GMRES-IR3 to a more versatile algorithm allowing finer
trade-offs between performance and robustness on numerically difficult
problems. In particular LU-GMRES-IR5 is more suited to the solution of
large sparse problems.

IR with sparse approximate factorization (Chap 6)
Performance analysis of state-of-the-art iterative refinement combined
with state-of-the-art sparse factorizations for the parallel solution of
sparse linear systems coming from real-life applications. We demonstrated
gains up to a factor 5.6 in time and 4.4 in memory on our set.

Mixed precision GMRES framework (Chap 7)
New mixed precision framework for GMRES that makes use of an arbitrary
preconditioner and 6 independent precision parameters. Error analysis
and first numerical experiments.

45/47

Two main research directions

1. Transfer state-of-the-art approximate computing techniques into
usable practical software:

ä MUMPS in half precision? The increasing availability of half
precision in CPU will make it easier to target a fully efficient half
sparse factorization BUT it might bring new challenges.

ä Would like to collaborate with a mature GMRES parallel solver (e.g.
HPDDM/PETSc) to propose a usable implementation of M-GMRES-IR6.

2. Develop generic and modular theoretical analyses to address the
increasing number of approximate computing propositions.

E.g.: In M-GMRES-IR6, as ua represents the independent accuracy of the
SpMV, any ”approximate SpMV” can be plugged in the analysis.

46/47

Acknowledgements

ä We thank the reviewers of the manuscript for their detailed
feedbacks, corrections, and advice which will surely enhance the
document.

ä We thank the CALMIP computing center for providing access to
the OLYMPE supercomputer.

ä We thank our industrial partners and the EoCoE project for
providing access to their matrices.

ä We thank Nick Higham and the NLA group of the University of
Manchester for their warm welcome and their support on the
making of this thesis.

ä We thank Serge Gratton and Pierre Jolivet for their kind advice.

47/47

	Solving Large Sparse Linear Systems
	Low precision arithmetics
	Numerical approximations
	Mixed precision iterative refinement(s) for LU direct solver
	Relax the precisions of LU-GMRES-IR3
	Error and performance analysis of LU-IR3 and LU-GMRES-IR5 on sparse systems with numerical approximations
	Arbitrary preconditioned GMRES in mixed precision
	Conclusion

