
A backward error analysis framework for
GMRES

Speaker: Bastien Vieublé
Co-authors: Alfredo Buttari, Nick Higham, and Théo Mary
16/05/2024

SIAM LA24



What is GMRES?

Throughout the presentation, we focus on
the Generalized Minimal RESidual (GMRES)
algorithm.

ä GMRES = Krylov-based iterative solver
for the solution of general square linear
systems Ax = b.

ä Computes iteratively an orthonormal
Krylov basis Vk through an Arnoldi
process.

ä Chooses the vector xk in span{Vk}
that minimizes ∥Axk − b∥.

ä Reiterate until xk is a satisfying
approximant of x.

Algorithm: GMRES(A,b, x0, τ )
Require: A ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1:
2: r0 = b− Ax0
3: β = ∥r0∥, v1 = r0/β, k = 1
4: repeat
5: wk = Avk
6:
7: for i = 1, . . . , k do
8: hi,k = vTi wk
9: wk = wk − hi,kvi
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk
1/12



What is GMRES?

Throughout the presentation, we focus on
the Generalized Minimal RESidual (GMRES)
algorithm.

ä GMRES = Krylov-based iterative solver
for the solution of general square linear
systems Ax = b.

ä Computes iteratively an orthonormal
Krylov basis Vk through an Arnoldi
process.

ä Chooses the vector xk in span{Vk}
that minimizes ∥Axk − b∥.

ä Reiterate until xk is a satisfying
approximant of x.

Algorithm: GMRES(A,b, x0, τ )
Require: A ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1:
2: r0 = b− Ax0
3: β = ∥r0∥, v1 = r0/β, k = 1
4: repeat
5: wk = Avk
6:
7: for i = 1, . . . , k do
8: hi,k = vTi wk
9: wk = wk − hi,kvi
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk
1/12



What is GMRES?

Throughout the presentation, we focus on
the Generalized Minimal RESidual (GMRES)
algorithm.

ä GMRES = Krylov-based iterative solver
for the solution of general square linear
systems Ax = b.

ä Computes iteratively an orthonormal
Krylov basis Vk through an Arnoldi
process.

ä Chooses the vector xk in span{Vk}
that minimizes ∥Axk − b∥.

ä Reiterate until xk is a satisfying
approximant of x.

Algorithm: GMRES(A,b, x0, τ )
Require: A ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1:
2: r0 = b− Ax0
3: β = ∥r0∥, v1 = r0/β, k = 1
4: repeat
5: wk = Avk
6:
7: for i = 1, . . . , k do
8: hi,k = vTi wk
9: wk = wk − hi,kvi
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk
1/12



What is GMRES?

Throughout the presentation, we focus on
the Generalized Minimal RESidual (GMRES)
algorithm.

ä GMRES = Krylov-based iterative solver
for the solution of general square linear
systems Ax = b.

ä Computes iteratively an orthonormal
Krylov basis Vk through an Arnoldi
process.

ä Chooses the vector xk in span{Vk}
that minimizes ∥Axk − b∥.

ä Reiterate until xk is a satisfying
approximant of x.

Algorithm: GMRES(A,b, x0, τ )
Require: A ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1:
2: r0 = b− Ax0
3: β = ∥r0∥, v1 = r0/β, k = 1
4: repeat
5: wk = Avk
6:
7: for i = 1, . . . , k do
8: hi,k = vTi wk
9: wk = wk − hi,kvi
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk
1/12



What is GMRES?

Throughout the presentation, we focus on
the Generalized Minimal RESidual (GMRES)
algorithm.

ä GMRES = Krylov-based iterative solver
for the solution of general square linear
systems Ax = b.

ä Computes iteratively an orthonormal
Krylov basis Vk through an Arnoldi
process.

ä Chooses the vector xk in span{Vk}
that minimizes ∥Axk − b∥.

ä Reiterate until xk is a satisfying
approximant of x.

Algorithm: GMRES(A,b, x0, τ )
Require: A ∈ Rn×n , b, x0 ∈ Rn , τ ∈ R
1:
2: r0 = b− Ax0
3: β = ∥r0∥, v1 = r0/β, k = 1
4: repeat
5: wk = Avk
6:
7: for i = 1, . . . , k do
8: hi,k = vTi wk
9: wk = wk − hi,kvi
10: end for
11: hk+1,k = ∥wk∥, vk+1 = wk/hk+1,k
12: Vk = [v1, . . . , vk]
13: Hk = {hi,j}1≤i≤j+1;1≤j≤k
14: yk = argminy ∥βe1 − Hky∥
15: k = k+ 1
16: until ∥βe1 − Hkyk∥ ≤ τ

17: xk = x0 + Vkyk
1/12



GMRES comes in many flavors

Preconditioning
GMRES might converge too slowly. It is essential to use a preconditioner M that
transforms Ax = b into an “easier” linear system to solve.

M−1Ax = M−1b (left), Au = b, u = Mx (right)

More possibilities: split preconditioning, non-constant preconditioners (FGMRES).

Example of M: ILU, polynomial, block Jacobi, approximate inverse, an iterative
method, ...

Restart
Principle: under a chosen restart criterion, stop the iteration, erase Vk , restart
GMRES with the initial guess x0 = xk .

The cost in memory and execution time of an iteration grows as we iterate ⇒
Restart cumulates more iterations while bounding the cost.

Orthogonalization
The Arnoldi process can be constructed with any orthogonalization procedures:
Householder QR, CGS, MGS, CGS2, ...

Warning: Different tradeoffs between numerical stability and performance! 2/12



What is a backward error analysis?

Backward and forward errors
Even for k = n, GMRES computed in finite precision won’t deliver the exact solution.
We quantify the quality of the computed solution x̂k by the quantities

bwd =
∥Ax̂k − b∥

∥A∥∥x̂k∥+ ∥b∥
, fwd =

∥x− x̂k∥
∥x∥

.

“The process of bounding the backward error of a computed solution is
called backward error analysis” N. J. Higham, Accuracy and Stability of Nu-
merical Algorithms.

comment-alt

Why we care?

ä Formal proof that GMRES is able to compute a correct solution.

ä Reveals the sensitivity to rounding errors of the different operations.

ä Is needed to derive a backward error analysis of an algorithm using GMRES.

3/12



Existing backward error analysis of GMRES

Bounding the backward and forward error of GMRES is NOT EASY:

ä GMRES is a complex algorithm made of different sub-algorithms
→ we need a backward error analysis on every sub-algorithm.
ä GMRES is an iterative process, bounds on the errors are only
valid from a certain k → we need to answer the question: at which
k the errors are satisfying.

4/12



Existing backward error analysis of GMRES

1995 • Householder GMRES
📔 “Numerical stability of GMRES” by J. Drkošová, A. Greenbaum,
M. Rozložník and Z. Strakoš, BIT Numerical Mathematics.

2006 • MGS GMRES
📔 “Modified Gram-Schmidt (MGS), least squares, and backward
stability of MGS-GMRES” by C. C. Paige, M. Rozložník, and Z.
Strakoš, 2006, SIAM SIMAX.

2007-2008 • Flexible MGS GMRES
📔 “A Note on GMRES Preconditioned by a Perturbed LDLT

Decomposition with Static Pivoting” by M. Arioli, I. S. Duff, S.
Gratton, and S. Pralet, SIAM SISC.
📔 “Using FGMRES to obtain backward stability in mixed
precision” by M. Arioli and I. S. Duff, ETNA.

4/12



Existing backward error analysis of GMRES

1995 • Householder GMRES
📔 “Numerical stability of GMRES” by J. Drkošová, A. Greenbaum,
M. Rozložník and Z. Strakoš, BIT Numerical Mathematics.

2006 • MGS GMRES
📔 “Modified Gram-Schmidt (MGS), least squares, and backward
stability of MGS-GMRES” by C. C. Paige, M. Rozložník, and Z.
Strakoš, 2006, SIAM SIMAX.

2007-2008 • Flexible MGS GMRES
📔 “A Note on GMRES Preconditioned by a Perturbed LDLT

Decomposition with Static Pivoting” by M. Arioli, I. S. Duff, S.
Gratton, and S. Pralet, SIAM SISC.
📔 “Using FGMRES to obtain backward stability in mixed
precision” by M. Arioli and I. S. Duff, ETNA.

4/12



Existing backward error analysis of GMRES

1995 • Householder GMRES
📔 “Numerical stability of GMRES” by J. Drkošová, A. Greenbaum,
M. Rozložník and Z. Strakoš, BIT Numerical Mathematics.

2006 • MGS GMRES
📔 “Modified Gram-Schmidt (MGS), least squares, and backward
stability of MGS-GMRES” by C. C. Paige, M. Rozložník, and Z.
Strakoš, 2006, SIAM SIMAX.

2007-2008 • Flexible MGS GMRES
📔 “A Note on GMRES Preconditioned by a Perturbed LDLT

Decomposition with Static Pivoting” by M. Arioli, I. S. Duff, S.
Gratton, and S. Pralet, SIAM SISC.
📔 “Using FGMRES to obtain backward stability in mixed
precision” by M. Arioli and I. S. Duff, ETNA.

4/12



Why do we need a new backward error analysis?

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...
× Four ways to apply them: left, right, split, flexible.
× Restart or not.
× Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...
× All the “more exotic” techniques: communication avoiding,
randomization, mixed precision, compression of the basis, ...

5/12



Why do we need a new backward error analysis?

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...

× Four ways to apply them: left, right, split, flexible.
× Restart or not.
× Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...
× All the “more exotic” techniques: communication avoiding,
randomization, mixed precision, compression of the basis, ...

5/12



Why do we need a new backward error analysis?

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...
× Four ways to apply them: left, right, split, flexible.

× Restart or not.
× Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...
× All the “more exotic” techniques: communication avoiding,
randomization, mixed precision, compression of the basis, ...

5/12



Why do we need a new backward error analysis?

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...
× Four ways to apply them: left, right, split, flexible.
× Restart or not.

× Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...
× All the “more exotic” techniques: communication avoiding,
randomization, mixed precision, compression of the basis, ...

5/12



Why do we need a new backward error analysis?

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...
× Four ways to apply them: left, right, split, flexible.
× Restart or not.
× Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...

× All the “more exotic” techniques: communication avoiding,
randomization, mixed precision, compression of the basis, ...

5/12



Why do we need a new backward error analysis?

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...
× Four ways to apply them: left, right, split, flexible.
× Restart or not.
× Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...
× All the “more exotic” techniques: communication avoiding,
randomization, mixed precision, compression of the basis, ...

5/12



Why do we need a new backward error analysis?

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...
× Four ways to apply them: left, right, split, flexible.
× Restart or not.
× Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...
× All the “more exotic” techniques: communication avoiding,
randomization, mixed precision, compression of the basis, ...

⇒ An almost infinite number of variants...

5/12



Why do we need a new backward error analysis?

... BUT only a tiny subset of them are covered by the previous analyses.

In addition:

ä These analyses were not made to be modular ⇒ Changing one
element requires redoing a big part of the analysis.
ä They are very smart, long, and hard ⇒ Understanding and adapting
them is a challenge.

5/12



Why do we need a new backward error analysis?

... BUT only a tiny subset of them are covered by the previous analyses.

In addition:

ä These analyses were not made to be modular ⇒ Changing one
element requires redoing a big part of the analysis.
ä They are very smart, long, and hard ⇒ Understanding and adapting
them is a challenge.

5/12



Why do we need a new backward error analysis?

... BUT only a tiny subset of them are covered by the previous analyses.

In addition:

ä These analyses were not made to be modular ⇒ Changing one
element requires redoing a big part of the analysis.
ä They are very smart, long, and hard ⇒ Understanding and adapting
them is a challenge.

Consequences:

ä A few GMRES variants have error bounds on their computed solution.
ä Bounding errors of a new variant is inconvenient and tedious.

5/12



Toward a generic and modular tool

Can we provide an analysis...

ä ... that gives the sharpest error bounds?
ä ... that is generic enough to cover “a lot” of possible GMRES variants (i.e.,
different preconditioners, orthogonalization, restart, mixed precision, ...)?
ä ... that is modular (if you change the orthogonalization method, you do
not need to redo all the analysis)?
ä ... that is easy to use to some extent?

6/12



Toward a generic and modular tool

Can we provide an analysis...

ä ... that gives the sharpest error bounds?

ä ... that is generic enough to cover “a lot” of possible GMRES variants (i.e.,
different preconditioners, orthogonalization, restart, mixed precision, ...)?
ä ... that is modular (if you change the orthogonalization method, you do
not need to redo all the analysis)?
ä ... that is easy to use to some extent?

6/12



Toward a generic and modular tool

Can we provide an analysis...

ä ... that gives the sharpest error bounds?
ä ... that is generic enough to cover “a lot” of possible GMRES variants (i.e.,
different preconditioners, orthogonalization, restart, mixed precision, ...)?

ä ... that is modular (if you change the orthogonalization method, you do
not need to redo all the analysis)?
ä ... that is easy to use to some extent?

6/12



Toward a generic and modular tool

Can we provide an analysis...

ä ... that gives the sharpest error bounds?
ä ... that is generic enough to cover “a lot” of possible GMRES variants (i.e.,
different preconditioners, orthogonalization, restart, mixed precision, ...)?
ä ... that is modular (if you change the orthogonalization method, you do
not need to redo all the analysis)?

ä ... that is easy to use to some extent?

6/12



Toward a generic and modular tool

Can we provide an analysis...

ä ... that gives the sharpest error bounds?
ä ... that is generic enough to cover “a lot” of possible GMRES variants (i.e.,
different preconditioners, orthogonalization, restart, mixed precision, ...)?
ä ... that is modular (if you change the orthogonalization method, you do
not need to redo all the analysis)?
ä ... that is easy to use to some extent?

6/12



Toward a generic and modular tool

Can we provide an analysis...

ä ... that gives the sharpest error bounds?
ä ... that is generic enough to cover “a lot” of possible GMRES variants (i.e.,
different preconditioners, orthogonalization, restart, mixed precision, ...)?
ä ... that is modular (if you change the orthogonalization method, you do
not need to redo all the analysis)?
ä ... that is easy to use to some extent?

⇒ We aim to propose a modular and generic backward error analysis tool
for GMRES.

6/12



Modular GMRES: an abstract algorithm

Algorithm: MOD-GMRES(A,b,Ml, Zk)
1: Compute Ck = ÃZk where Ã = M−1

l A.
2: Compute b̃ = M−1

l b.
3: Solve yk = argminy ∥b̃− Cky∥.
4: Compute the approximant xk = Zkyk.

Principle: Finding xk ∈ span{Zk} minimizing the left-preconditioned residual
∥b̃− Ãx∥.

ä Little assumptions on the
operations.

ä Zk can be any basis of rank k.

ä Do not assume Arnoldi process.

ä Not presented as an iterative
process.

ä Can be seen as a subspace projection method solving the
left-preconditioned system in span{Zk}, where the left-preconditioner Ml,

the basis Zk, and the least squares solver are not specified.

7/12



Modular GMRES: an abstract algorithm

Algorithm: MOD-GMRES(A,b,Ml, Zk)
1: Compute Ck = ÃZk where Ã = M−1

l A.
2: Compute b̃ = M−1

l b.
3: Solve yk = argminy ∥b̃− Cky∥.
4: Compute the approximant xk = Zkyk.

Principle: Finding xk ∈ span{Zk} minimizing the left-preconditioned residual
∥b̃− Ãx∥.

ä Little assumptions on the
operations.

ä Zk can be any basis of rank k.

ä Do not assume Arnoldi process.

ä Not presented as an iterative
process.

ä Can be seen as a subspace projection method solving the
left-preconditioned system in span{Zk}, where the left-preconditioner Ml,

the basis Zk, and the least squares solver are not specified.
7/12



Modular GMRES: an abstract algorithm

Algorithm: MOD-GMRES(A,b,Ml, Zk)
1: Compute Ck = ÃZk where Ã = M−1

l A.
2: Compute b̃ = M−1

l b.
3: Solve yk = argminy ∥b̃− Cky∥.
4: Compute the approximant xk = Zkyk.

Specialization to:

Algorithm: MGS GMRES without preconditioner
1: Compute Ck = AV̂k, where Ml = I and V̂k is the computed Arnoldi basis.
2:
3: Solve yk = argminy ∥b− AV̂ky∥ by MGS Arnoldi.
4: Compute the approximant xk = V̂kyk.

7/12



Modular GMRES: an abstract algorithm

Algorithm: MOD-GMRES(A,b,Ml, Zk)
1: Compute Ck = ÃZk where Ã = M−1

l A.
2: Compute b̃ = M−1

l b.
3: Solve yk = argminy ∥b̃− Cky∥.
4: Compute the approximant xk = Zkyk.

Specialization to:

Algorithm: MGS GMRES with left- LU preconditioner
1: Compute Ck = ÃV̂k, where Ã = U\L\A and V̂k is the Arnoldi basis.
2: Compute b̃ = U\L\b.
3: Solve yk = argminy ∥b̃− ÃV̂ky∥ by MGS Arnoldi.
4: Compute the approximant xk = V̂kyk.

7/12



Modular GMRES: an abstract algorithm

Algorithm: MOD-GMRES(A,b,Ml, Zk)
1: Compute Ck = ÃZk where Ã = M−1

l A.
2: Compute b̃ = M−1

l b.
3: Solve yk = argminy ∥b̃− Cky∥.
4: Compute the approximant xk = Zkyk.

Specialization to:

Algorithm: CGS2 GMRES with flexible LU preconditioner
1: Compute Ck = AZk, where Ml = I and Zk = U\L\V̂k.
2:
3: Solve yk = argminy ∥b− AZky∥ by CGS2 Arnoldi.
4: Compute the approximant xk = Zkyk.

7/12



Modular GMRES: an abstract algorithm

Algorithm: MOD-GMRES(A,b,Ml, Zk)
1: Compute Ck = ÃZk where Ã = M−1

l A.
2: Compute b̃ = M−1

l b.
3: Solve yk = argminy ∥b̃− Cky∥.
4: Compute the approximant xk = Zkyk.

MOD-GMRES is an abstract generic algorithm that can be specialized to
many GMRES algorithms ⇒ Any result on MOD-GMRES holds for its

specializations.

Our goal: Make a backward error analysis of MOD-GMRES.

One analysis to rule them all!

7/12



Modular rounding error model

The terms ϵÃ , ϵb , ϵLS, and ϵZ quantify the accuracies of every operation and are
unspecified. They are only specified for a given specialization of MOD-GMRES.

Matrix–matrix product with the basis (step 1)

f l(ÃZk) = ÃZk +∆ÃZk
, ∥∆ÃZk

∥ ≤ ϵÃ∥ÃZk∥.

Preconditioned RHS (step 2)

f l(M−1
l b) = b̃+∆b̃, ∥∆b̃∥ ≤ ϵb∥b̃∥.

Least squares solution (step 3)

ŷk = argminy ∥b̃+∆b′ − (f l(AZk) + ∆′
ÃZk

)∥

∥[∆b̃′,∆′
ÃZk

]ej∥ ≤ ϵLS∥[b̃, f l(AZk)]ej∥

Compute the kth approximant (step 4)

x̂k = fl(Zkŷk) = (Zk +∆Zk )̂yk, ∥∆Zk∥ ≤ ϵZ∥Zk∥
8/12



A key dimension(/iteration)

We need to define the special dimension(/iteration) k at which we can
demonstrate that the computed solution has attained a satisfying error.

Key dimension
We define the key dimension k as the first k ≤ n such that, for all ϕ > 0, we
have

σmin([b̃ϕ, ÃZk]) ≤ (ϵÃ + ϵb + ϵLS)∥[b̃ϕ, ÃZk]∥F
and

σmin(ÃZk) ≫ (ϵÃ + ϵb + ϵLS)∥ÃZk∥F.

The philosophy of these conditions is to capture the exact moment where b̃
lies in the range of ÃZk, which is the moment where the basis Zk contains the
solution.

📔 “Modified Gram-Schmidt (mgs), least squares, and backward stability of
MGS-GMRES” by C. C. Paige, M. Rozložník, and Z. Strakoš, 2006, SIAM SIMAX.

9/12



Error bounds of MOD-GMRES

Theorem
Consider the solution of a nonsingular linear system

Ax = b, A ∈ Rn×n, 0 ̸= b ∈ Rn,

with MOD-GMRES under the previous error model. If there exists a key dimension k
as defined previously, then, MOD-GMRES produces a computed solution x̂k whose
backward and forward error satisfies respectively

∥b− Ax̂k∥
∥b∥+ ∥A∥∥x̂k∥

≲ Φκ(Ml),
∥x̂k − x∥

∥x∥
≲ Φκ(Ã),

where
Φ ≡ αϵÃ + βϵb + βϵLS + λϵZ

with

α ≡ σ−1
min(Zk)

∥ÃZk∥
∥Ã∥

, β ≡ max(1, σ−1
min(Zk)

∥ÃZk∥
∥Ã∥

), λ ≡ σ−1
min(Zk)∥Zk∥.

10/12



How to use?

How to use the previous result to derive forward and backward error bounds
for real GMRES algorithms?

Using the previous theorem requires some work:

ä Show that your algorithm is a specialization of MOD-GMRES.

ä Determine ϵÃ, ϵb, ϵLS, and ϵZ. The difficulty of this step varies according
to the existing literature of the sub-algorithms used.

ä Show the existence of the key dimension. The difficulty also varies
according to the existing literature.

This Theorem is backward compatible with the previous analyses: Applying
it on Householder GMRES, MGS GMRES, and Flexible MGS GMRES gives the
same results as the existing analyses.

11/12



How to use?

How to use the previous result to derive forward and backward error bounds
for real GMRES algorithms?

Using the previous theorem requires some work:

ä Show that your algorithm is a specialization of MOD-GMRES.

ä Determine ϵÃ, ϵb, ϵLS, and ϵZ. The difficulty of this step varies according
to the existing literature of the sub-algorithms used.

ä Show the existence of the key dimension. The difficulty also varies
according to the existing literature.

This Theorem is backward compatible with the previous analyses: Applying
it on Householder GMRES, MGS GMRES, and Flexible MGS GMRES gives the
same results as the existing analyses.

11/12



How to use?

How to use the previous result to derive forward and backward error bounds
for real GMRES algorithms?

Using the previous theorem requires some work:

ä Show that your algorithm is a specialization of MOD-GMRES.

ä Determine ϵÃ, ϵb, ϵLS, and ϵZ. The difficulty of this step varies according
to the existing literature of the sub-algorithms used.

ä Show the existence of the key dimension. The difficulty also varies
according to the existing literature.

This Theorem is backward compatible with the previous analyses: Applying
it on Householder GMRES, MGS GMRES, and Flexible MGS GMRES gives the
same results as the existing analyses.

11/12



Conclusion

Takeaways

ä Many GMRES variants not covered by a backward error analysis.
ä We propose a backward error analysis framework to efficiently
derive error bounds on new variants.
ä We can apply this framework on most existing GMRES using ap-
proximate computing.

📔 “A modular framework for the backward error analysis of GMRES” by A. Buttari, N. J.
Higham, T. Mary, B. Vieublé, Preprint.

12/12


