A backward error analysis framework for GMRES

Speaker: Bastien Vieublé

Co-authors: Alfredo Buttari, Nick Higham, and Théo Mary

16/05/2024

SIAM LA24

Throughout the presentation, we focus on the Generalized Minimal RESidual (GMRES) algorithm.

```
Require: A \in \mathbb{R}^{n \times n}, b, x_0 \in \mathbb{R}^n, \tau \in \mathbb{R}
  2: r_0 = b - Ax_0
 3: \beta = ||r_0||, v_1 = r_0/\beta, k = 1
  4: repeat
  5: W_b = AV_b
  6.
  7: for i = 1, ..., k do
  8: h_{i,b} = v_{i}^{T} w_{b}
  9: W_k = W_k - h_{i,k} V_i
10:
       end for
 11:
       h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}
12: V_b = [v_1, \dots, v_b]
13: H_k = \{h_{i,i}\}_{1 < i < i+1:1 < i < k}
14: y_k = \operatorname{argmin}_v \|\beta e_1 - H_k y\|
15. k = k + 1
16: until \|\beta e_1 - H_b V_b\| < \tau
17: X_b = X_0 + V_b V_b
```

Throughout the presentation, we focus on the Generalized Minimal RESidual (GMRES) algorithm.

➤ GMRES = Krylov-based iterative solver for the solution of general square linear systems Ax = b.

```
Require: A \in \mathbb{R}^{n \times n}, b, x_0 \in \mathbb{R}^n, \tau \in \mathbb{R}
  2: r_0 = b - Ax_0
 3: \beta = ||r_0||, v_1 = r_0/\beta, k = 1
  4: repeat
  5: W_b = AV_b
  6.
        for i = 1, \ldots, k do
  8: h_{i,k} = \mathbf{v}_i^\mathsf{T} \mathbf{w}_k
        W_k = W_k - h_{ik} V_i
10:
        end for
 11:
         h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}
12: V_b = [v_1, \dots, v_b]
13: H_k = \{h_{i,i}\}_{1 < i < i+1:1 < i < k}
14: y_k = \operatorname{argmin}_v \|\beta e_1 - H_k y\|
15. k = k + 1
16: until \|\beta e_1 - H_b V_b\| < \tau
17: X_b = X_0 + V_b V_b
```

Throughout the presentation, we focus on the Generalized Minimal RESidual (GMRES) algorithm.

- ➤ GMRES = Krylov-based iterative solver for the solution of general square linear systems Ax = b.
- ➤ Computes iteratively an orthonormal **Krylov basis** *V_k* through an Arnoldi process.

```
Require: A \in \mathbb{R}^{n \times n}, b, x_0 \in \mathbb{R}^n, \tau \in \mathbb{R}
  1:
  2: r_0 = b - Ax_0
 3: \beta = ||r_0||, v_1 = r_0/\beta, k = 1
  4: repeat
  5: W_b = AV_b
  6:
       for i = 1, \ldots, k do
  8:
        h_{i,b} = v_i^T w_b
           W_b = W_k - h_{i,k} V_i
10:
        end for
 11:
         h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}
12:
       V_b = [v_1, \ldots, v_b]
13: H_k = \{h_{i,i}\}_{1 < i < i+1:1 < i < k}
14: y_k = \operatorname{argmin}_v \|\beta e_1 - H_k y\|
15. k = k + 1
16: until \|\beta e_1 - H_b V_b\| < \tau
17: X_b = X_0 + V_b V_b
```

Throughout the presentation, we focus on the Generalized Minimal RESidual (GMRES) algorithm.

- ➤ GMRES = Krylov-based iterative solver for the solution of general square linear systems Ax = b.
- ➤ Computes iteratively an orthonormal **Krylov basis** *V_k* through an Arnoldi process.
- ➤ Chooses the vector x_k in $span\{V_k\}$ that minimizes $||Ax_k b||$.

```
Require: A \in \mathbb{R}^{n \times n}, b, x_0 \in \mathbb{R}^n, \tau \in \mathbb{R}
  1:
  2: r_0 = b - Ax_0
 3: \beta = ||r_0||, v_1 = r_0/\beta, k = 1
  4: repeat
  5: W_b = AV_b
  6:
       for i = 1, \ldots, k do
  8:
       h_{i,b} = v_i^T w_b
           W_k = W_k - h_{ik} V_i
10:
         end for
 11:
         h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}
12:
        V_b = [v_1, \ldots, v_b]
13: H_k = \{h_{i,i}\}_{1 < i < i+1:1 < i < k}
14: y_k = \operatorname{argmin}_v \|\beta e_1 - H_k y\|
15. k = k + 1
16: until \|\beta e_1 - H_b V_b\| < \tau
17: X_b = X_0 + V_b V_b
```

Throughout the presentation, we focus on the Generalized Minimal RESidual (GMRES) algorithm.

- ➤ GMRES = Krylov-based iterative solver for the solution of general square linear systems Ax = b.
- ➤ Computes iteratively an orthonormal **Krylov basis** *V_k* through an Arnoldi process.
- ➤ Chooses the vector x_k in $span\{V_k\}$ that minimizes $||Ax_k b||$.
- **Reiterate** until x_k is a satisfying approximant of x.

```
Require: A \in \mathbb{R}^{n \times n}, b, x_0 \in \mathbb{R}^n, \tau \in \mathbb{R}
  1:
  2: r_0 = b - Ax_0
 3: \beta = ||r_0||, v_1 = r_0/\beta, k = 1
  4: repeat
  5: W_b = AV_b
  6:
       for i = 1, \ldots, k do
  8:
        h_{i,b} = v_i^T w_b
           W_k = W_k - h_{ik} V_i
10:
         end for
 11:
         h_{k+1,k} = ||w_k||, v_{k+1} = w_k/h_{k+1,k}
12:
        V_b = [v_1, \ldots, v_b]
13: H_k = \{h_{i,i}\}_{1 < i < i+1:1 < i < k}
14:
       y_k = \operatorname{argmin}_v \|\beta e_1 - H_k y\|
15. k = k + 1
16: until \|\beta e_1 - H_b V_b\| < \tau
17: X_b = X_0 + V_b V_b
```

GMRES comes in many flavors

Preconditioning

GMRES might converge too slowly. It is essential to use a preconditioner M that transforms Ax = b into an "easier" linear system to solve.

$$M^{-1}Ax = M^{-1}b$$
 (left), $Au = b$, $u = Mx$ (right)

More possibilities: split preconditioning, non-constant preconditioners (FGMRES).

Example of M: ILU, polynomial, block Jacobi, approximate inverse, an iterative method, ...

Restart

Principle: under a chosen restart criterion, stop the iteration, erase V_k , restart GMRES with the initial guess $x_0 = x_k$.

The cost in memory and execution time of an iteration grows as we iterate \Rightarrow Restart cumulates more iterations while bounding the cost.

Orthogonalization

The Arnoldi process can be constructed with any orthogonalization procedures: Householder QR, CGS, MGS, CGS2, ...

Warning: Different tradeoffs between numerical stability and performance!

What is a backward error analysis?

Backward and forward errors

Even for k=n, GMRES computed in finite precision won't deliver the exact solution. We quantify the quality of the computed solution \widehat{x}_k by the quantities

$$bwd = \frac{\|A\widehat{x}_k - b\|}{\|A\| \|\widehat{x}_k\| + \|b\|}, \qquad fwd = \frac{\|x - \widehat{x}_k\|}{\|x\|}.$$

"The process of bounding the backward error of a computed solution is called backward error analysis" **N. J. Higham**, Accuracy and Stability of Numerical Algorithms.

Why we care?

- ➤ Formal proof that GMRES is able to compute a correct solution.
- ➤ Reveals the sensitivity to rounding errors of the different operations.
- ➤ Is needed to derive a backward error analysis of an algorithm using GMRES.

Bounding the backward and forward error of GMRES is NOT EASY:

- ➤ GMRES is a complex algorithm made of different sub-algorithms → we need a backward error analysis on every sub-algorithm.
- **>** GMRES is an iterative process, **bounds** on the errors are only **valid from a certain** k → we need to answer the question: at which k the errors are satisfying.

1995

Householder GMRES

- [a] "Numerical stability of GMRES" by J. Drkošová, A. Greenbaum,
- M. Rozložník and Z. Strakoš, BIT Numerical Mathematics.

1995

Householder GMRES

"Numerical stability of GMRES" by J. Drkošová, A. Greenbaum,
M. Rozložník and Z. Strakoš, BIT Numerical Mathematics.

2006

MGS GMRES

■ "Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES" by C. C. Paige, M. Rozložník, and Z. Strakoš, 2006, SIAM SIMAX.

1995

Householder GMRES

"Numerical stability of GMRES" by J. Drkošová, A. Greenbaum,
M. Rozložník and Z. Strakoš, BIT Numerical Mathematics.

2006

MGS GMRES

■ "Modified Gram-Schmidt (MGS), least squares, and backward stability of MGS-GMRES" by C. C. Paige, M. Rozložník, and Z. Strakoš, 2006, SIAM SIMAX.

2007-2008

Flexible MGS GMRES

■ "A Note on GMRES Preconditioned by a Perturbed LDL^T

Decomposition with Static Pivoting" by M. Arioli, I. S. Duff, S. Gratton, and S. Pralet, SIAM SISC.

! "Using FGMRES to obtain backward stability in mixed precision" by **M. Arioli and I. S. Duff**, ETNA.

The range of possible variants of GMRES is astonishing!

Number of variants =

The range of possible variants of GMRES is astonishing!

Number of variants =

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...

X Four ways to apply them: left, right, split, flexible.

The range of possible variants of GMRES is astonishing!

Number of variants =

- X Four ways to apply them: left, right, split, flexible.
- X Restart or not.

The range of possible variants of GMRES is astonishing!

Number of variants =

- X Four ways to apply them: left, right, split, flexible.
- X Restart or not.
- X Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...

The range of possible variants of GMRES is astonishing!

Number of variants =

- X Four ways to apply them: left, right, split, flexible.
- X Restart or not.
- X Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...
- X All the "more exotic" techniques: communication avoiding, randomization, mixed precision, compression of the basis, ...

The range of possible variants of GMRES is astonishing!

Number of variants =

A plethora of preconditioners...

- X Four ways to apply them: left, right, split, flexible.
- X Restart or not.
- × Possible orthogonalization methods: CGS, MGS, CGS2, Householder, ...
- X All the "more exotic" techniques: communication avoiding, randomization, mixed precision, compression of the basis, ...

⇒ An almost infinite number of variants...

... BUT only a tiny subset of them are covered by the previous analyses.

... BUT only a tiny subset of them are covered by the previous analyses.

In addition:

- ➤ These analyses were **not** made to be **modular** ⇒ Changing one element requires redoing a big part of the analysis.
- ➤ They are very smart, long, and hard ⇒ Understanding and adapting them is a challenge.

... BUT only a tiny subset of them are covered by the previous analyses.

In addition:

- ➤ These analyses were **not** made to be **modular** ⇒ Changing one element requires redoing a big part of the analysis.
- ➤ They are very smart, long, and hard ⇒ Understanding and adapting them is a challenge.

Consequences:

- ➤ A few GMRES variants have error bounds on their computed solution.
- ➤ Bounding errors of a new variant is inconvenient and tedious.

Can we provide an analysis...

➤ ... that gives the sharpest error bounds?

- ➤ ... that gives the sharpest error bounds?
- ➤ ... that is generic enough to cover "a lot" of possible GMRES variants (i.e., different preconditioners, orthogonalization, restart, mixed precision, ...)?

- ➤ ... that gives the sharpest error bounds?
- ➤ ... that is generic enough to cover "a lot" of possible GMRES variants (i.e., different preconditioners, orthogonalization, restart, mixed precision, ...)?
- ➤ ... that is modular (if you change the orthogonalization method, you do not need to redo all the analysis)?

- ➤ ... that gives the sharpest error bounds?
- ➤ ... that is generic enough to cover "a lot" of possible GMRES variants (i.e., different preconditioners, orthogonalization, restart, mixed precision, ...)?
- ➤ ... that is modular (if you change the orthogonalization method, you do not need to redo all the analysis)?
- ➤ ... that is easy to use to some extent?

Can we provide an analysis...

- ➤ ... that gives the sharpest error bounds?
- ➤ ... that is generic enough to cover "a lot" of possible GMRES variants (i.e., different preconditioners, orthogonalization, restart, mixed precision, ...)?
- ➤ ... that is modular (if you change the orthogonalization method, you do not need to redo all the analysis)?
- ➤ ... that is easy to use to some extent?

 \Rightarrow We aim to propose a modular and generic backward error analysis tool for GMRES.

Algorithm: MOD-GMRES (A, b, M_l, Z_k)

- 1: Compute $C_k = \widetilde{A}Z_k$ where $\widetilde{A} = M_L^{-1}A$.
- 2: Compute $\tilde{b} = M_1^{-1}b$.
- 3: Solve $y_k = \operatorname{argmin}_y ||b C_k y||$.
- 4: Compute the approximant $x_k = Z_k y_k$.

Algorithm: MOD-GMRES(A, b, M_l, Z_k)

- 1: Compute $C_k = \widetilde{A}Z_k$ where $\widetilde{A} = M_l^{-1}A$.
- 2: Compute $\tilde{b} = M_1^{-1}b$.
- 3: Solve $y_k = \operatorname{argmin}_v ||\tilde{b} C_k y||$.
- 4: Compute the approximant $x_k = Z_k y_k$.

Principle: Finding $x_k \in span\{Z_k\}$ minimizing the left-preconditioned residual $\|\tilde{b} - \widetilde{A}x\|$.

- ➤ Little assumptions on the operations.
- $ightharpoonup Z_k$ can be any basis of rank k.

- ➤ Do not assume Arnoldi process.
- ➤ Not presented as an iterative process.
- ightharpoonup Can be seen as a **subspace projection method** solving the left-preconditioned system in span $\{Z_k\}$, where the left-preconditioner M_l , the basis Z_k , and the least squares solver are **not specified**.

Algorithm: MOD-GMRES(A, b, M_l, Z_k)

- 1: Compute $C_k = \widetilde{A}Z_k$ where $\widetilde{A} = M_l^{-1}A$.
- 2: Compute $\tilde{b} = M_1^{-1}b$.
- 3: Solve $y_k = \operatorname{argmin}_y ||\tilde{b} C_k y||$.
- 4: Compute the approximant $x_k = Z_k y_k$.

Specialization to:

Algorithm: MGS GMRES without preconditioner

- 1: Compute $C_k = A\widehat{V}_k$, where $M_l = I$ and \widehat{V}_k is the computed Arnoldi basis.
- 2:
- 3: Solve $y_k = \operatorname{argmin}_y \|b A\widehat{V}_k y\|$ by MGS Arnoldi.
- 4: Compute the approximant $x_k = \widehat{V}_k y_k$.

Algorithm: MOD-GMRES(A, b, M_l, Z_k)

- 1: Compute $C_k = \widetilde{A}Z_k$ where $\widetilde{A} = M_L^{-1}A$.
- 2: Compute $\tilde{b} = M_1^{-1}b$.
- 3: Solve $y_k = \operatorname{argmin}_y ||\tilde{b} C_k y||$.
- 4: Compute the approximant $x_k = Z_k y_k$.

Specialization to:

Algorithm: MGS GMRES with left- LU preconditioner

- 1: Compute $C_k = \widetilde{A}\widehat{V}_k$, where $\widetilde{A} = U \setminus L \setminus A$ and \widehat{V}_k is the Arnoldi basis.
- 2: Compute $\widetilde{b} = U \setminus L \setminus b$.
- 3: Solve $y_k = \operatorname{argmin}_v \|\widetilde{b} \widetilde{A}\widehat{V}_k y\|$ by MGS Arnoldi.
- 4: Compute the approximant $x_k = \widehat{V}_k y_k$.

Algorithm: MOD-GMRES(A, b, M_l, Z_k)

- 1: Compute $C_k = \widetilde{A}Z_k$ where $\widetilde{A} = M_L^{-1}A$.
- 2: Compute $\tilde{b} = M_1^{-1}b$.
- 3: Solve $y_k = \operatorname{argmin}_y ||\tilde{b} C_k y||$.
- 4: Compute the approximant $x_k = Z_k y_k$.

Specialization to:

Algorithm: CGS2 GMRES with flexible LU preconditioner

- 1: Compute $C_k = AZ_k$, where $M_l = I$ and $Z_k = U \backslash L \backslash \widehat{V}_k$.
- 2
- 3: Solve $y_k = \operatorname{argmin}_v \|b AZ_k y\|$ by CGS2 Arnoldi.
- 4: Compute the approximant $x_k = Z_k y_k$.

Algorithm: MOD-GMRES(A, b, M_l, Z_k)

- 1: Compute $C_k = \widetilde{A}Z_k$ where $\widetilde{A} = M_L^{-1}A$.
- 2: Compute $\tilde{b} = M_1^{-1}b$.
- 3: Solve $y_k = \operatorname{argmin}_v \|\widetilde{b} C_k y\|$.
- 4: Compute the approximant $x_k = Z_k y_k$.

MOD-GMRES is an abstract generic algorithm that can be specialized to many GMRES algorithms ⇒ Any result on MOD-GMRES holds for its specializations.

Our goal: Make a backward error analysis of MOD-GMRES.

One analysis to rule them all!

Modular rounding error model

The terms $\epsilon_{\tilde{A}}$, ϵ_b , ϵ_{LS} , and ϵ_Z quantify the accuracies of every operation and are unspecified. They are only specified for a given specialization of MOD-GMRES.

Matrix-matrix product with the basis (step 1)

$$\mathsf{fl}(\widetilde{A}Z_k) = \widetilde{A}Z_k + \Delta_{\widetilde{A}Z_k}, \qquad \|\Delta_{\widetilde{A}Z_k}\| \leq \epsilon_{\widetilde{A}}\|\widetilde{A}Z_k\|.$$

Preconditioned RHS (step 2)

$$\mathrm{fl}(M_l^{-1}b) = \widetilde{b} + \Delta \widetilde{b}, \qquad \|\Delta \widetilde{b}\| \leq \underline{\epsilon_b} \|\widetilde{b}\|.$$

Least squares solution (step 3)

$$\begin{split} \widehat{y}_k &= \mathsf{argmin}_y \, \| \widetilde{b} + \Delta b' - (\mathsf{fl}(\mathsf{A} \mathsf{Z}_k) + \Delta'_{\widetilde{\mathsf{A}} \mathsf{Z}_k}) \| \\ & \| [\Delta \widetilde{b}', \Delta'_{\widetilde{\mathsf{A}} \mathsf{Z}_b}] e_j \| \leq \epsilon_{\mathsf{LS}} \| [\widetilde{b}, \mathsf{fl}(\mathsf{A} \mathsf{Z}_k)] e_j \| \end{split}$$

Compute the kth approximant (step 4)

$$\widehat{X}_k = \mathsf{fl}(Z_k \widehat{y}_k) = (Z_k + \Delta Z_k) \widehat{y}_k, \qquad \|\Delta Z_k\| \le \epsilon_{\mathbb{Z}} \|Z_k\|$$

A key dimension(/iteration)

We need to define the special dimension(/iteration) k at which we can demonstrate that the computed solution has attained a satisfying error.

Key dimension

We define the key dimension k as the first $k \leq n$ such that, for all $\phi > 0$, we have

$$\sigma_{\min}([\widetilde{b}\phi,\widetilde{A}Z_k]) \leq (\epsilon_{\widetilde{A}} + \epsilon_b + \epsilon_{LS}) \|[\widetilde{b}\phi,\widetilde{A}Z_k]\|_F$$

and

$$\sigma_{\min}(\widetilde{A}Z_k) \gg (\boldsymbol{\epsilon}_{\widetilde{A}} + \boldsymbol{\epsilon}_{b} + \boldsymbol{\epsilon}_{LS}) \|\widetilde{A}Z_k\|_F.$$

The philosophy of these conditions is to capture the exact moment where \tilde{b} lies in the range of $\tilde{A}Z_k$, which is the moment where the basis Z_k contains the solution.

[4] "Modified Gram-Schmidt (mgs), least squares, and backward stability of MGS-GMRES" by C. C. Paige, M. Rozložník, and Z. Strakoš, 2006, SIAM SIMAX.

Error bounds of MOD-GMRES

Theorem

Consider the solution of a nonsingular linear system

$$Ax = b$$
, $A \in \mathbb{R}^{n \times n}$, $0 \neq b \in \mathbb{R}^n$,

with MOD-GMRES under the previous **error model**. If there exists a key dimension k as defined previously, then, MOD-GMRES produces a computed solution \widehat{x}_k whose **backward** and **forward** error satisfies respectively

$$\frac{\|b - A\widehat{x}_k\|}{\|b\| + \|A\| \|\widehat{x}_k\|} \lesssim \Phi \kappa(M_l), \qquad \frac{\|\widehat{x}_k - x\|}{\|x\|} \lesssim \Phi \kappa(\widetilde{A}),$$

where

$$\Phi \equiv \alpha \epsilon_{\tilde{\mathsf{A}}} + \beta \epsilon_{\mathsf{b}} + \beta \epsilon_{\mathsf{LS}} + \lambda \epsilon_{\mathsf{Z}}$$

with

$$\alpha \equiv \sigma_{\min}^{-1}(Z_k) \frac{\|\widetilde{A}Z_k\|}{\|\widetilde{A}\|}, \quad \beta \equiv \max(1, \sigma_{\min}^{-1}(Z_k) \frac{\|\widetilde{A}Z_k\|}{\|\widetilde{A}\|}), \quad \lambda \equiv \sigma_{\min}^{-1}(Z_k) \|Z_k\|.$$

How to use?

How to use the previous result to **derive** forward and backward error bounds **for real GMRES algorithms**?

How to use?

How to use the previous result to **derive** forward and backward error bounds for real GMRES algorithms?

Using the previous theorem requires some work:

- ➤ Show that your algorithm is a specialization of MOD-GMRES.
- **Determine** $\epsilon_{\tilde{h}}$, ϵ_{b} , ϵ_{LS} , and ϵ_{Z} . The difficulty of this step varies according to the existing literature of the sub-algorithms used.
- ➤ Show the existence of the key dimension. The difficulty also varies according to the existing literature.

How to use?

How to use the previous result to **derive** forward and backward error bounds for real GMRES algorithms?

Using the previous theorem requires some work:

- ➤ Show that your algorithm is a **specialization of MOD-GMRES**.
- **Determine** $\epsilon_{\tilde{A}}$, ϵ_{b} , ϵ_{LS} , and ϵ_{Z} . The difficulty of this step varies according to the existing literature of the sub-algorithms used.
- ➤ Show the existence of the key dimension. The difficulty also varies according to the existing literature.

This Theorem is backward compatible with the previous analyses: Applying it on Householder GMRES, MGS GMRES, and Flexible MGS GMRES gives the same results as the existing analyses.

Conclusion

Takeaways

- ➤ Many GMRES variants not covered by a backward error analysis.
- ➤ We propose a backward error analysis framework to efficiently derive error bounds on new variants.
- ➤ We can apply this framework on most existing GMRES using approximate computing.

■ "A modular framework for the backward error analysis of GMRES" by A. Buttari, N. J. Higham, T. Mary, B. Vieublé, Preprint.